Gate Propagation Delay

Say the input to a logic gate changes its state (e.g., 0 to \(V^+ \), or \(V^+ \) to 0). The output of the gate will likely change state as a result.

However, the output will not change instantaneously when the input changes. Instead, the output will change after a small delay.

We call this delay the propagation delay. Ideally, this delay is as small as possible; typically, it is on the order of a few nanoseconds or less.

Often, the delay when the output changes from low to high is a different value than the delay when the output changes from high to low. Therefore, we can define:

\[
\begin{align*}
 t_{pHL} &= \text{delay for output changing from high to low} \\
 t_{pLH} &= \text{delay for output changing from low to high}
\end{align*}
\]

We can therefore define the propagation delay \(t_p \) as the average of these values:

\[
t_p = \frac{t_{pHL} + t_{pLH}}{2}
\]
Q: Why does this delay occur?

A: Again, the reason is output capacitance!

It takes a non-zero amount of time to charge or discharge a capacitor. In other words, the output voltage cannot change instantaneously to a change in the input.

Propagation delay is a particularly disturbing problem when we construct a complex digital circuit consisting of many interconnecting stages. For example:

![Diagram of a digital circuit with propagation delays](attachment:image.png)

The total propagation delay for this complex digital circuit is therefore:

\[t_p = t_{pHL1} + t_{pHL2} + t_{pHL3} + t_{pHL4} \]

Thus, although the propagation delay of one individual logic gate may be insignificant, the total delay through a complex digital circuit consisting of many stages and gates can be quite large!

This can cause big problems in the precise timing required of sophisticated and complex digital systems!