Peak CMOS Current

Q: What do you mean, "peak CMOS current"? I thought that the drain current of a CMOS inverter was \(i_D = 0 \)?

A: The drain current \(i_D \) is zero specifically when \(v_I = 0 \) or \(v_I = V_{DD} \). But, consider when \(v_I \) is some value between 0 and \(V_{DD} \).

Diagram:

- The diagram shows the relationship between input voltage \(v_I \) and output voltage \(v_O \) for a CMOS inverter.

- The points labeled A, B, C, and D correspond to different regions of operation:
 - **A:** \(V_{OH} = V_{DD} \) with a slope of -1 indicating the transition between \(Q_N \) off and triode region.
 - **B:** The point \((\frac{V_{DD}}{2} + V_I) \) showing the transition between different regions.
 - **C:** \((\frac{V_{DD}}{2} - V_I) \) with a slope of -1 indicating the transition in the input range.
 - **D:** The transition point \(V_{DD} - V_I \) indicating the off region for the output.

- The diagram also highlights points \(V_{OL} = 0 \) and \(V_{IH} \) as critical points for understanding the operation of the CMOS inverter.

- The equation \(V_{th} = \frac{V_{DD}}{2} \) is used to define the threshold voltage for the transition.
Note it is apparent from the transfer function that:

1. If $V_t < V_I < V_{DD}/2$, then Q_N is in saturation and Q_P is in triode.

2. If $V_I = V_{DD}/2$, then Q_N and Q_P are both in saturation.

3. If $V_{DD}/2 < V_I < (V_{DD} - V_t)$, then Q_N is in triode and Q_P is in saturation.

Note that for each of these three cases, a conducting channel is present in both transistors Q_N and Q_P.

The drain current i_D is therefore non-zero !!!

Note that the peak current i_D^{peak} occurs when $V_I = V_{DD}/2$.
A: The answer is rather obvious! The peak current occurs when $\nu_I = V_{DD}/2$. For that situation, we know that both transistor Q_N and Q_P are in saturation—and we know the current through a MOSFET when in saturation is:

"K times the excess gate voltage squared"

For this case, $\nu_{GSN} = \nu_I = V_{DD}/2$, thus:

$$i_D^{peak} = K_n (\nu_{GSN} - \nu_{th})^2$$
$$= K (V_{DD}/2 - \nu_f)^2$$

If we wish to minimize the dynamic power dissipation P_D, then we need to minimize this current value (e.g., minimize K, or maximize ν_f).

Q: I can’t wait to find out the value of this peak current i_D^{peak}!!

Jim Stiles The Univ. of Kansas Dept. of EECS