Synthesis of CMOS Gates

Let's consider the design synthesis of CMOS gates by considering the design synthesis of PUN and PDN separately.

PDN Design Synthesis

1. If the PDN is **conducting**, then the **output** will be **low**. Thus, we must find a Boolean expression for the **complemented output** \bar{Y}.

In turn, the PDN can only be conducting if **one or more** of the NMOS devices are **conducting**—and NMOS devices will be conducting (i.e., **triode** mode) when the inputs are **high** ($V_{GSN} = V_{DD}$).

Thus, we must express \bar{Y} in terms of **un-complemented inputs** A, B, C, etc (i.e., $\bar{Y} = f (A, B, C)$).

 \[
 \text{e.g., } \Rightarrow \bar{Y} = A + BC
 \]

This step may test our **Boolean algebraic** skills!
2. Then, we realize **AND** operations in $\bar{Y} = f(A, B, C)$ with **series NMOS** devices. E.G.:

Note that $Y=0$ if both $A = V_{DD}$ AND $B = V_{DD}$.

3. Likewise, we realize **OR** operations with **parallel NMOS** devices. E.G.:

Note that $Y=0$ if either $A = V_{DD}$ OR $B = V_{DD}$.
PUN Design Synthesis

1. If the PUN is conducting, then the output will be high. Thus, we must find a Boolean expression for the un-complemented output \(Y \).

 In turn, the PUN can only be conducting if one or more of the PMOS devices are conducting—and PMOS devices will be conducting (i.e., triode mode) when the inputs are low (\(V_{GSP} = -V_{DD} \)).

 Thus, we must express \(Y \) in terms of complemented inputs \(\overline{A}, \overline{B}, \overline{C} \), etc (i.e., \(Y = f(\overline{A}, \overline{B}, \overline{C}) \)).

 \[
 \text{e.g., } \quad Y = \overline{A} + \overline{B} \overline{C}
 \]

 This step may test our **Boolean algebraic skills**!
2. Then, we realize **AND** operations with **series PMOS** devices. E.G.:

Note that $Y = V_{DD}$ if both $A = 0$ **AND** $B = 0$.

$Y = \overline{A} \overline{B}$

3. Likewise, we realize **OR** operations with **parallel PMOS** devices. E.G.:

Note that $Y = V_{DD}$ if either $A = 0$ **OR** $B = 0$.

$Y = \overline{A} + \overline{B}$