<u>3.4 Operation in the Reverse Breakdown</u> <u>Region — Zener Diodes *(pp. 167-171)*</u>

A <u>Zener</u> Diode \rightarrow

The 3 <u>technical</u> differences between a junction diode and a Zener diode:

2.

1.

3.

➔

.: 1.

2

The <u>practical</u> difference between a Zener diode and "normal" junction diodes:

3.

HO: Zener Diode Notation

A. Zener Diode Models

Q: How do we analyze zener diodes circuits?

A: Same as junction diode circuits—

Big problem ->

Big solution ->

HO: Zener Diode Models

Example: Zener Circuit Analysis

B. Voltage Regulation

Say that we have a 20 V supply but need to place 10 V across some load:

Zener Diode Notation

To distinguish a **zener** diode from conventional junction diodes, we use a modified diode **symbol**:

Generally speaking, a **zener** diode will be operating in either **breakdown** or **reverse bias** mode.

For both these **two** operating regions, the cathode **voltage** will be greater than the anode voltage, i.e.,:

 $v_D < 0$ (for r.b. and bd)

Likewise, the diode **current** (although often tiny) will flow from cathode to anode for these two modes:

 $i_D < 0$ (for r.b. and bd)

Q: Yikes! Won't the the numerical values of both i_D and v_D be **negative** for a zener diode (assuming only rb and b.d. modes).

A: With the standard diode notation, this is true. Thus, to avoid **negative** values in our circuit computations, we are going to **change** the definitions of diode current and voltage!

* Likewise, we denote diode voltage as the potential at the cathode with respect to the potential at the anode.

Note that each of the above two statements are precisely opposite to the "conventional" junction diode notation that we have used thus far:

or

 i_D^{\prime}

0.7

 i_{Z}

0.7V

Two ways of expressing the same junction diode curve.

 $-V_{ZK}$

V_{ZK}

Zener Diode Models

The conventional diode models we studied earlier were based on junction diode behavior in the **forward** and **reverse** bias regions—they did **not** "match" the junction diode behavior in **breakdown**!

 $-V_{ZK}$

However, we assume that **Zener** diodes most often operate in **breakdown**—we need **new** diode models!

Specifically, we need models that match junction/Zener diode behavior in the **reverse bias** and **breakdown** regions.

We will study **two** important zener diode models, each with **familiar** names!

- 1. The Constant Voltage Drop (CVD) Zener Model
- 2. The Piece-Wise Linear (PWL) Zener Model

The Zener CVD Model

Let's see, we know that a Zener Diode in **reverse** bias can be described as:

$$i_Z \approx I_s \approx 0$$
 and $v_Z < V_{ZK}$

Whereas a Zener in breakdown is approximately stated as:

$$i_z > 0$$
 and $v_z \approx V_{z_z}$

Q: Can we construct a **model** which behaves in a **similar** manner??

A: Yes! The Zener CVD model behaves precisely in this way!

Analyzing this Zener CVD model, we find that **if** the model voltage v_Z is less than V_{ZK} (i.e., $v_Z < V_{ZK}$), then the **ideal** diode will be in **reverse** bias, and thus the model current i_Z will equal **zero**. In other words:

 $i_z = 0$ and $v_z < V_{ZK}$

Just like a Zener diode in reverse bias!

Likewise, we find that **if** the model current is positive $(i_Z > 0)$, then the **ideal** diode must be **forward** biased, and thus the model voltage must be $v_Z = V_{ZK}$. In other words:

$$v_z > 0$$
 and $v_z = V_{ZK}$

Just like a Zener diode in breakdown!

Problem: The voltage across a zener diode in breakdown is NOT EXACTLY equal to V_{ZK} for all $i_z > 0$. The CVD is an **approximation**.

 $i_{Z} = 0$

 $v_{d}^{i} < 0$

Please Note:

* The PWL model includes a **very small** series resistor, such that the voltage across the model v_z increases slightly with increasing i_z .

* This small resistance r_Z is called the dynamic resistance.

* The voltage source V_{Z0} is not equal to the zener breakdown voltage V_{ZK}, however, it is typically very close!

Analyzing this Zener PWL model, we find that **if** the model voltage v_Z is less than V_{ZO} (i.e., $v_Z < V_{ZO}$), then the **ideal** diode will be in **reverse** bias, and the model current i_Z will equal zero. In other words: $i_Z = 0$ and $v_Z < V_{ZO} \approx V_{ZK}$

Just like a Zener diode in reverse bias!

Likewise, we find that **if** the model current is positive ($i_Z > 0$), then the **ideal** diode must be **forward** biased, and thus: $i_Z > 0$ and $v_Z = V_{Z0} + i_Z r_Z$ Note that the model voltage v_Z will be near V_{ZK} , but will increase **slightly** as the model current increases.

 $i_z > 0$ + $v_d^i = 0$

 V_{ZO}

$$V_{z0} + i_z r_z$$

 $V_{7} =$

+

Just like a Zener diode in breakdown!

<u>Example: Zener Diode</u> <u>Circuit Analysis</u>

*i*___

+

Consider the circuit below:

V_{ZK}=8.0V $v_z = V_0 \langle R_L = 1K \rangle$ *Vs*=15 V

i_z

Note that the load resistor R_L is in **parallel** with the Zener diode, so that the voltage V_O across this load resistor is **equal** to the Zener diode voltage v_Z .

Q: So just what is the value of voltage V_{O} ?

R=0.5K_i

A: Let's replace the Zener diode with a Zener CVD model and find out!

A: Yes! We analyze it **precisely** like we did in section 3.1 remember, there are **no** Zener diodes in the circuit above!

ASSUME: IDEAL diode is forward biased.

i

+ $v_d^i = 0$

8.0

 i_d^i

Ĭ,

 $v_z = V_0 \langle R_L = 1K$

R=0.5K

ENFORCE: $v_d^i = 0$

ANALYZE:

From KVL:

$$v_{Z} = V_{O} = v_{D}^{i} + 8.0 = 0 + 8.0 = 8.0 \text{ V}$$

From KCL:

$$\dot{i}=\dot{i}_{D}^{i}+\dot{i}_{L}$$

where from Ohm's Law:

$$i = \frac{15 - 8.0}{0.5} = 14 \text{ mA}$$

The Shunt Regulator

1

+

*V*₀= *V_{ZK}*

The shunt regulator is a *voltage regulator*. That is, a device that keeps the voltage across some load resistor (R_L) *constant*.

Q: Why would this voltage not be a constant?

R

A: Two reasons:

 V_5

(1) the source voltage V_s may vary and change with time.

(2) The **load** R_L may also vary and **change** with time. In other words, the **current** i_L delivered to the load may change.

What can we do to keep load voltage V_0 constant?

⇒ Employ a **Zener diode** in a **shunt regulator** circuit!

Let's **analyze** the shunt regulator circuit in terms of Zener breakdown voltage V_{ZK} , source voltage V_S , and load resistor R_L .

 $v_z = V_0 \sum_{l=1}^{\infty} R_l$

Replacing the Zener diode with a **Zener CVD model**, we ASSUME the ideal diode is **forward** biased, and thus ENFORCE $v_D^i = 0$.

+

 V_{ZK}

 $v_d^i = 0$

ANALYZE:

R

From KVL:

 V_{5}

$$\boldsymbol{v}_{Z} = \boldsymbol{V}_{O} = \boldsymbol{v}_{D}^{i} + \boldsymbol{V}_{ZK} = \boldsymbol{V}_{ZK}$$

From KCL:

 $i = i_D^i + i_L$

where:

$$i = \frac{V_s - V_{ZK}}{D}$$

Hence, the Zener diode may **not** be in breakdown (i.e., the ideal diode may not be f.b.) if V_5 or R_L are too small, or shunt resistor R is too large!

 $V_{S} \frac{R_{L}}{R+R_{L}} > V_{ZK}$

Summarizing, we find that if:

 $V_{S} \frac{R_{L}}{R+R_{I}} > V_{ZK}$

then:

 V_{5}

- 1. The Zener diode is in breakdown.
- 2. The load voltage $V_{O} = V_{ZK}$.
- 3. The load current is $i_L = V_{ZK}/R_L$.

Extra current

goes in here!

- 4. The current through the shunt resistor *R* is $i = (V_s V_{ZK})/R$.
- 5. The current through the Zener diode is $i_z = i i_L > 0$.

We find then, that if the source voltage V_5 increases, the current *i* through shunt resistor *R* will likewise increase. However, this extra current will result in an equal increase in the Zener diode current i_{Z} —thus the load current (and therefore load voltage V_0) will remain unchanged!

 i_Z

*V*₀= *V_{ZK}*

Similarly, if the **load current** i_L increases (i.e., R_L decreases), then the Zener current i_Z will decrease by an **equal** amount. As a result, the current through shunt resistor R (and therefore the load voltage V_O) will remain **unchanged**!

Q: You mean that V_O stays **perfectly constant**, regardless of source voltage V_S or load current i_L ?

A: Well, V_0 remains approximately constant, but it will change a tiny amount when V_5 or i_L changes.

To determine precisely how **much** the load voltage V_O changes, we will need to use a more **precise** Zener diode model (i.e., the Zener **PWL**)!

1/4

Line Regulation

Since the Zener diode in a shunt regulator has some small (but non-zero) dynamic resistance r_Z , we find that the load voltage V_O will have a small dependence on source voltage V_S .

In other words, if the source voltage V_S increases (decreases), the load voltage V_O will **likewise** increase (decrease) by some very small amount.

Q: Why would the source voltage V_5 ever change?

A: There are many reasons why V_{S} will not be a perfect constant with time. Among them are:

- 1. Thermal noise
- 2. Temperature drift
- 3. Coupled 60 Hz signals (or digital clock signals)

As a result, it is more appropriate to represent the **total** source voltage as a time-varying signal $(v_s(t))$, consisting of both a **DC** component (V_s) and a **small-signal** component $(\Delta v_s(t))$:

$$V_{s} = V_{s}(t) = V_{s} + \Delta V_{s}(t)$$

$$V_{s} = \sqrt{2} + \Delta V_{s}(t)$$

$$V_{s} = \sqrt{2} + \Delta V_{s}(t)$$

As a result of the small-signal source voltage, the total **load** voltage is likewise time-varying, with both a DC (V_0) and small-signal (Δv_0) component:

$$\mathbf{v}_{\mathcal{O}}(\mathbf{t}) = \mathbf{V}_{\mathcal{O}} + \Delta \mathbf{v}_{\mathcal{O}}(\mathbf{t})$$

So, we know that the DC source V_S produces the DC load voltage V_O , whereas the small-signal **source** voltage ΔV_s results in the small-signal **load** voltage ΔV_o .

Q: Just how are Δv_s and Δv_o **related**? I mean, if Δv_s equals, say, **500 mV**, what will value of Δv_o be?

A: Determining this answer is easy! We simply need to perform a small-signal analysis.

In other words, we first replace the Zener diode with its **Zener PWL model**.

 R_{l}

$$\Delta \boldsymbol{v}_{o} = \Delta \boldsymbol{v}_{s} \left(\frac{\boldsymbol{r}_{z} \| \boldsymbol{R}_{L}}{\boldsymbol{R} + \boldsymbol{r}_{z} \| \boldsymbol{R}_{L}} \right)$$
$$\approx \Delta \boldsymbol{v}_{s} \left(\frac{\boldsymbol{r}_{z}}{\boldsymbol{r}_{z} + \boldsymbol{R}} \right)$$

Rearranging, we find:

$$\frac{\Delta \mathbf{v}_o}{\Delta \mathbf{v}_s} = \frac{\mathbf{r}_Z}{\mathbf{r}_Z + \mathbf{R}} \doteq \text{ line regulation}$$

This equation describes an important performance parameter for shunt regulators. We call this parameter the **line regulation**.

* Line regulation allows us to determine the **amount** that the load voltage changes (Δv_o) when the source voltage changes (Δv_s) .

* For example, if line regulation is 0.002, we find that the load voltage will increase 1 mV when the source voltage increases 500mV

(i.e., $\Delta v_o = 0.002 \Delta v_s = 0.002(0.5) = 0.001 \text{ V}$).

* Ideally, line regulation is zero. Since dynamic resistance r_Z is typically very small (i.e., $r_Z \ll R$), we find that the line regulation of most shunt regulators is likewise small (this is a good thing!).

 V_5

For voltage regulators, we typically define a load R_L in terms of its current i_L , where:

$$\dot{I}_L = \frac{V_O}{R_L}$$

Note that since the load (i.e., regulator) voltage v_0 is a constant (approximately), specifying i_L is **equivalent** to specifying R_L , and vice versa!

Now, since the Zener diode in a shunt regulator has some small (but non-zero) dynamic resistance r_Z , we find that the load voltage v_O will also have a **very small** dependence on load resistance R_L (or equivalently, **load current** i_L).

In fact, if the load current i_{L} increases (decreases), the load voltage v_{O} will actually **decrease** (increase) by some small amount.

Q: Why would the load current *i*_L ever change?

A: You must realize that the load resistor R_L simply **models** a more **useful** device. The "load" may in fact be an amplifier, or a component of a cell phone, or a circuit board in a digital computer.

These are all **dynamic** devices, such that they may require **more** current at some times than at others (e.g., the computational load increases, or the cell phone begins to transmit).

As a result, it is more appropriate to represent the **total** load current as a time-varying signal $(i_{L}(t))$, consisting of both a **DC** component (I_{L}) and a **small-signal** component $(\Delta i_{L}(t))$:

$$i_{L}(t) = I_{L} + \Delta i_{L}(t)$$

This small-signal load current of course leads to a load voltage that is **likewise** time-varying, with both a DC (V_O) and small-signal (ΔV_o) component:

$$\mathbf{V}_{\mathcal{O}}(\mathbf{t}) = \mathbf{V}_{\mathcal{O}} + \Delta \mathbf{V}_{\mathcal{O}}(\mathbf{t})$$

So, we know that the DC load current I_L produces the DC load voltage V_O , whereas the small-signal load current $\Delta i_L(t)$ results in the small-signal load voltage ΔV_O .

We can **replace** the load resistor with **current sources** to represent this load current:

Q: Just how are Δv_s and Δv_o **related**? I mean, if Δi_l equals, say, **50 mA**, what will value of Δv_o be?

A: Determining this answer is **easy**! We simply need to perform a **small-signal analysis**.

In other words, we first replace the Zener diode with its **Zener PWL model**.

We then turn off all the DC sources (including
$$V_{ZO}$$
) and
analyze the remaining small-signal circuit!

$$A_{i_{i}} = \frac{\Delta i_{i}}{r_{z}} + \frac{\Delta i_$$

* Note load regulation is expressed in units of resistance (e.g., Ω).

* Note also that load regulation is a **negative** value. This means that **increasing** i_{L} leads to a **decreasing** v_{O} (and vice versa).

* Load regulation allows us to determine the **amount** that the load voltage changes (Δv_o) when the load current changes (Δi_L) .

* For example, if load regulation is -0.0005 K Ω , we find that the load voltage will **decrease** 25 mV when the load current **increases** 50mA

 $(i.e., \Delta v_{o} = -0.0005 \Delta i_{L} = -0.0005 (50) = -0.025 V).$

* **Ideally**, load regulation is **zero**. Since dynamic resistance r_Z is typically very small (i.e., $r_Z \ll R$), we find that the load regulation of most shunt regulators is likewise **small** (this is a **good** thing!).

1/4

<u>Example: The Shunt</u> <u>Regulator</u>

Consider the **shunt regulator**, built using a zener diode with V_{ZK} =15.0 V and incremental resistance r_z = 5 Ω :

- **1.** Determine **R** if the largest possible value of i_L is 20 mA.
- **2**. Using the value of R found in part 1 determine i_Z if R_L =1.5 K.
- 3. Determine the change in v_0 if V_5 increases one volt.
- 4. Determine the change in v_0 if i_1 increases 1 mA.

<u>Part 1:</u>

From KCL we know that $i = i_Z + i_L$.

We also know that for the diode to remain in breakdown, the zener current must be **positive**.

i.e., $i_{Z} = i - i_{L} > 0$

Therefore, if i_{L} can be as large as 20 mA, then *i* must be greater than 20 mA for i_{Z} to remain greater than zero.

i.e. *i* > 20mA

Q: But, what is i ??

A: Use the zener CVD model to analyze the circuit.

Therefore from Ohm's Law:

i

$$= \frac{V_{s} - V_{ZK}}{R} = \frac{25 - 15}{R} = \frac{10}{R}$$

and thus i> 20mA if:

$$R < \frac{10}{20} = 0.5 \text{ K} = 500 \Omega$$

Note we want *R* to be as large as possible, as large *R* improves both **line** and **load** regulation.

Therefore, set $R = 500 \Omega = 0.5 K$

<u>Part 2:</u>

Again, use the zener CVD model, and enforce $v_D^i = 0$:

and from Ohm's Law:

$$i = \frac{V_s - V_{ZK}}{R} = \frac{25.0 - 15.0}{0.5} = 20.0 \text{ mA}$$

$$i_L = \frac{V_{ZK}}{R_L} = \frac{15.0}{1.5} = 10.0 \text{ mA}$$
Therefore $i'_D = i - i_L = 20 - 10 = 10.0 \text{ mA}$ ($\therefore i'_D = 10 > 0 \checkmark$)
And thus we estimate $i_Z = i'_D = 10.0 \text{ mA}$
Part 3:
The shunt regulator line regulation is:
Line Regulation $= \frac{r_2}{R + r_2} = \frac{5}{500 + 5} = 0.01$
Therefore if $\Delta v_s = 1 \text{ V}$, then $\Delta v_0 = (0.01) \Delta v_s = 0.01 \text{ V}$
Part 4:
The shunt regulator load regulation is:
Load Regulation $= \frac{-R}{R + r_2} = \frac{-(500)5}{500 + 5} = -4.95 \Omega$

Therefore if $\Delta i_L = 1 \text{ mA}$, then $\Delta v_o = -(4.95)\Delta i_L = -4.95 \text{ mV}$