13.1 Digital Logic Inverters

Reading Assignment: pp. 1061-1069

Consider the ideal digital logic inverter.

Q: Ideal inverter? How would an ideal inverter behave?

A: HO: THE IDEAL INVERTER

Q: What about **non**-ideal inverters? How do we describe them?

A: There are **many** non-ideal inverter behaviors to consider and characterize!

HO: NOISE MARGINS

HO: POWER DISSIPATION

HO: PROPAGATION DELAY

HO: THE DELAY-POWER PRODUCT

What transfer function is ideal?

In other words, what is the ideal transfer function $v_{O} = f(v_{I})$ of a

digital inverter?

For example, say $V^{\dagger} = 5V$.

How should the inverter respond to $v_I = 1$ V, or $v_I = 2$ V, or $v_I = 4$ V??

Note v_I = 1 V and v_I = 2 V are closer to 0.0 V (low level) than they are to 5.0 V (high level).

The inverter should thus interpret them as low inputs and the output should then be placed precisely at the high state $v_0 = 5 V$.

* Similarly, for $v_I = 4$ V, the inverter **should** interpret it as **high** input and thus the **output** should be placed precisely at the **low** state $v_O = 0$ V.

The ideal inverter transfer function

Therefore, we can say that an **ideal** digital inverter will interpret **input** values **less** than $V^+/2$ (i.e., < 2.5 V) as **low** inputs, and thus produce an **ideal output** of V (i.e., 5.0 V).

Likewise, any **input** values greater than $V^+/2$ (i.e., > 2.5 V) will be interpreted as a **high** input, and thus an **ideal low** value of 0.0 V will be placed at the output.

Therefore, the ideal transfer function for a digital inverter is

An ideal inverter has the

largest possible noise margin

By the way, the ideal inverter has **noise margins** (NM) of:

Noise Margins

The transfer function of a digital inverter will typically look something like this:

<u>3 regions of the curve</u>

Note that there are essentially three regions to this curve:

I. The region where v_I is relatively low, so that the output voltage v_O is high.

II. The region where v_I is relatively **high**, so that the output voltage v_O is **low**.

III. The **transition region**, where the input/output voltage is in an **indeterminate state** (i.e., an **ambiguous** region between high and low.

Let's characterize this curve

Although this transfer function looks rather simple, there are actually several parameters that we use to characterize this transfer function—and thus characterize the digital inverter as well!

1. First of all, let's consider the case when $v_I = 0$.

The **output** of the digital inverter in this condition is **defined** as V_{OH} (i.e., OH \rightarrow "output high"), i.e.:

$$V_{OH} \doteq v_{O}$$
 when $v_{I} = 0$

Thus, V_{OH} is essentially the "ideal" inverter high output, as it is the output voltage when the inverter input is at its ideal low input value $v_{I}=0$.

Typically, V_{OH} is a value just slightly less than supply voltage V.

∧V0

V_{OH}

4/19

OL does not stand for "out loud"

2. Now, let's consider the case when $v_I = V^*$.

The output of the digital inverter in this condition is **defined** as V_{OL} (i.e., $OL \rightarrow$ "output low"), i.e.:

$$V_{OL} \doteq v_{O}$$
 when $v_{I} = V^{T}$

Thus, V_{OL} is essentially the "ideal" inverter low output, as it is the output voltage when the inverter input is at its ideal high input value v_T = V^+ .

Typically, V_{OL} is a value just **slightly** greater than 0.

 V_I

$$\mathbf{v}_{\mathcal{O}} = f(\mathbf{v}_{\mathcal{I}})$$

VOL

' V⁺

Lower boundary of the transition region

3. The "**boundary**" between region I and the transition region of the transfer function is denoted as V_{IL} (i.e., $IL \rightarrow$ "input low").

Specifically, this is the value of the **input** voltage that corresponds to the **first** point on the transfer function where the **slope** is equal to -1.0 (i.e., where $dv_o/dv_I = -1.0$)

Effectively, the value V_{IL} places an **upper bound** on an acceptably "**low**" value of input v_I —any v_I greater than V_{IL} is **not** considered to be a "low" input value.

I.F.:

Upper boundary of the transition region

4. Likewise, the "**boundary**" between region II and the transition region of the transfer function is denoted as V_{IH} (i.e., IH \rightarrow "input high").

Specifically, this is the value of the **input** voltage that corresponds to the **second** point on the transfer function where the **slope** is equal to -1.0 (i.e., where $dv_O/dv_I = -1.0$).

Effectively, the value V_{IH} places a lower bound on an acceptably "high" value of input v_I —any v_I lower than V_{IH} is not considered to be a "high" input value.

Ambiguity is our foe

Accordingly, the **output** voltages in the transition region are both significantly less that V_{OH} and significantly larger then V_{OL} .

Thus, the **output** voltages that occur in the transition region are **likewise ambiguous** (cannot be assigned a logical state).

Lesson learned \rightarrow Stay away from the transition region!

In other words, we must ensure that an **input** voltage representing a logical "**low**" value is **significantly lower** than V_{IL} , and an **input** voltage representing a logical "**high**" value is **significantly higher** than V_{IH} .

Q: Seems simple enough! Why don't we **end** this exceedingly dull handout and **move on** to something more interesting!?

A: Actually, staying **out** of the transition region is sometimes **more difficult** than you might first imagine!

Jim Stiles

<u>There are many digital devices</u> in your average Best Buy gizmo

The reason for this is that in a **digital system**, the devices are **connected** together—the input of one device is the output of the other, and vice versa.

<u>A measure of how close we</u>

are to the transition region

In fact, we have a specific name for the difference between $V_{\rm IL}$ and $V_{\rm OL}$ —we call this value Noise Margin (NM):

$$\mathsf{NM}_{\mathsf{L}} = \mathsf{V}_{\mathsf{IL}} - \mathsf{V}_{\mathsf{OL}} \qquad \begin{bmatrix} \mathsf{Volts} \end{bmatrix}$$

The noise margin essentially tells us **how close** we are to the **ambiguous** transition region for a typical case where $v_I = V_{OL}$.

Of course, we do **not** wish to be close to this transition region at all, so **ideally** this noise margin is **very large**!

The input is Voн

Now, consider the **alternate** case where v_{II} =0.0 V.

The **output** of the **first** inverter is therefore $V_{O1} = V_{OH}$.

Thus, the **input** to the **second** inverter is **likewise** equal to V_{OH} (i.e., $v_{I2} = v_{O2} = V_{OH}$). V^{\star} V^{\star} *v₀₁=v₁₂=*V_{0H} *v*_{I1}=0.0 VO2 Q: This still doesn't seem to be a problem—after all, isn't V_{OH} much larger than V_{IH}??

We want noise margins to be large

A: Again, this is true enough!

The input $v_{I2}=V_{OH}$ is typically well above the minimum acceptable value V_{IH} .

We can **again** specify the **difference** between V_{IH} and V_{OH} as a **noise margin** (NM):

$$\mathsf{NM}_{\mathsf{H}} = \mathsf{V}_{\mathsf{OH}} - \mathsf{V}_{\mathsf{IH}} \qquad \begin{bmatrix} \mathsf{Volts} \end{bmatrix}$$

This noise margin essentially tells us how close we are to the ambiguous transition region for a typical case where
$$v_I = 0.0$$
 V.

Of course, we do **not** wish to be close to this transition region at all, so ideally this noise margin is **very large**!

<u>A better model</u>

The voltage at the input of a device might be affected by **many** sources—**only one** of which is the output device connected to it!

Examples of these "extra" sources include:

. Thermal noise

2. Coupled signals

3. Power supply transients

We will **combine** the effect of **all** of these sources together into one "noise" source $v_n(t)$. Thus, a **better model** for our digital circuit example is:

The noise can push us closer

to the transition region!

Now, let's **reconsider** the case where $v_{II} = V^+$.

We find that the **input** to the **second** digital inverter is then $v_{I2} = V_{OL} + v_n(t)$:

Now we see the problem!

If the noise voltage is too large, then the input to the second inverter will exceed the maximum low input level of V_{IL} —we will have entered the dreaded transition region!!!!

Margins need to be larger than noise

To avoid the transition region, we find that the input to the second inverter must be less than $V_{\rm IL}$:

 $V_{OL} + v_n(t) < V_{IL}$ $v_n(t) < V_{IL} - V_{OL}$ $v_n(t) < NM_L$

Look at what this means!

It says to avoid the transition region (i.e., for the input voltage to have an unambiguously "low" digital level), the **noise** must be **less** than **noise margin** NM_L for **all time** t!

Thus, if the **noise margin** NM_L is **large**, the noise $v_n(t)$ can be large **without** causing any deleterious effect (deleterious effect \rightarrow transition region).

Conversely, if the noise margin NM_L is small, then the noise must be small to avoid ambiguous voltage levels.

Lesson learned \rightarrow Large noise margins are very desirable!

Jim Stiles

VO2

Noise can be negative

Considering **again** the example circuit, only this time with v_{I} =0.0 V:

we find that to **avoid** the transition region (verify this for yourself!):

$$V_{OH} + v_n(t) > V_{IH} \implies v_n(t) < NM_H$$

 $v_n(t)$

Note that the noise $v_n(t)$ is as likely to be positive as negative—it is in fact **negative** valued noise that will send v_{I2} to a value less than V_{IH} !

Thus, we can make the statement that the **magnitude** of the **noise** $v_n(t)$ must be **less** than the **noise margins** to avoid the ambiguous values of the disturbing **transition region**!

Gate Power Dissipation

Every digital gate will require some amount of **power**.

DURAC

We consider two types of power:

Static P_D - Power dissipated when gate is not changing state.

Dynamic P_D - Power dissipated when gate is changing states.

Changing state requires energy

Typically we find that:

```
Dynamic P_D \geq Static P_D
```

In fact, for CMOS logic gates (e.g., a CMOS digital inverter), we will find that the static P_D is nearly zero!

However, we will find that it **always** takes some energy to **change** the output state of a digital logic gate.

Q: Why is that??

A: Capacitance!

When we change the **voltage** at the output, we must charge or discharge the **capacitance** associated with the output.

This requires current!

Capacitance is the culprit

Although engineers work very hard to **minimize** the output capacitance of digital circuits, we **cannot** fully eliminate it.

Note that the displacement current $i_{\mathcal{C}}(t)$ flowing "through" this capacitor is proportional to the time derivative of the output voltage.

- * Thus, if the output state is **static** (i.e., it is not changing), this derivative is **zero**, as is the current.
- * However, if the output is **dynamic** (i.e. it is changing with time), the derivative is **non-zero**, and thus displacement current **flows** in the capacitor.

The faster we change states,

the more power is required

* Note that the **faster** we change the output, the **more** displacement current is produced, meaning **more power** is required!

* Thus, we come to the (correct) conclusion that **dynamic** power dissipation is **dependent** on the speed (e.g., clock frequency) of the digital logic.

> The "faster" the logic, the higher the dynamic power dissipation!

As a result, dynamic P_D is typically **specified** as a function of **frequency**.

Gate Propagation Delay

Say the **input** to a logic gate changes its state (e.g., 0 to V^+ , or V^+ to 0).

The output of the gate will likely change state as a result.

However, the output will not change instantaneously when the input changes.

Instead, the output will change after a small delay.

We call this delay the propagation delay.

The output does not instantly change

Ideally, this delay is as **small** as possible; typically, it is on the order of a few **nanoseconds** or less.

Often, the delay when the output changes from low to high is a different value than the delay when the output changes from high to low.

Therefore, we can define:

 t_{pHL} = delay for output changing from high to low

Capacitance is the culprit

We can therefore define the propagation delay t_p as the average of these

 $t_p = \frac{t_{pHL} + t_{pHL}}{2}$

values:

Q: Why does this delay occur?

A: One main reason is output capacitance!

It takes a non-zero amount of time to charge or discharge a capacitor.

 $\begin{array}{c} + \\ - \\ - \\ \end{array} v_{I}(t) \end{array}$

In other words, the output voltage **cannot** change **instantaneously** to a change in the input.

Jim Stiles

One reason we use synchronous systems

Propagation delay is a particularly disturbing **problem** when we construct a **complex** digital circuit consisting of **many** interconnecting stages.

The total propagation delay for this complex digital circuit is therefore:

$$t_p = t_{pHL1} + t_{pHL2} + t_{pHL3} + t_{pHL4}$$

Thus, although the propagation delay of **one** individual logic gate may be insignificant, the **total delay** through a complex digital circuit consisting of many stages and gates can be quite **large**!

→ This can cause **big problems** in the precise timing required of sophisticated and complex digital systems!

Delay-Power Product

Q: So, an ideal digital technology would have BOTH very small propagation delay t_p , AND very small power dissipation P_D , right ?

A: True!

But, there is a problem.

Designing a "faster" (e.g., lower t_p) digital gate usually requires greater power.

And designing a gate to minimize power consumption usually **slows down** the digital device.

Propagation delay and power dissipation generally form a design trade off—improve one and you degrade the other !

The lower DP, the better

To quantify how effective, or efficient a digital design technology is in terms of delay and power, we use the product of the **propagation delay** and the **power dissipation**:

The delay-power product (DP)!

The delay-power product is therefore **defined** as:

$$DP = P_D t_p$$

* Note we could define either a **static or dynamic** delay-power product, depending on P_D.

* Note also the **unit** of the delay-power product—**Joules** !!

The delay-power product is a figure of merit for digital technologies.

Jim Stiles