4.1 Device Structure and Physical Operation

Reading Assignment: pp. 235-248

Chapter 4 covers Field Effect Transistors ().

Specifically, Metal Oxide Semiconductor Field Effect Transistors ().

1.

2.

Each of these types can likewise be an n-channel MOSFET (), or a p-channel MOSFET ().

A. NMOS Enhancement Structure

Q:

A: HO: The Structure of an NMOS Enhancement FET
B. The Induced Channel

HO: Creating a Channel for Current Flow

C. The Modes of a MOSFET Transistor

1.
2.
3.

HO: Applying a Drain Voltage to an NMOS Device

D. The p-Channel Enhancement MOSFET

HO: PMOS and CMOS
The Structure of an NMOS Enhancement FET

An NMOS Enhancement FET is a FOUR terminal device!

Moreover, each terminal has a specific name:

1. Source (S)
2. Drain (D)
3. Gate (G)
4. Body (B)

Each terminal is associated with a metal electrode that is attached to the semiconductor device.

* The Body electrode is connected directly to the p-type substrate.
* Two heavily doped n-type “wells” are implanted into the p-type substrate. The Source and Drain electrodes are each connected to one of these n^+ wells.

* The region between these n^+ wells is called the **channel**. The channel has **two** important geometries—channel width W, and channel length L.

* Typical values for channel length L are 0.1 to 3 μm (1 μm is 0.001 millimeter!), while channel width W is typically 0.2 to 100 μm.

* The Gate electrode rests on top of the channel, but is not connected directly to it. Instead, the channel and gate electrode are separated by a thin (e.g., 2-5 nm) layer of Silicon Dioxide (SiO_2).

* Silicon Dioxide is essentially glass! Glass is a very good insulator—thus, no current can flow from the gate into the MOSFET device!

* Thus, the Silicon Dioxide layer is **sandwiched** between the metal Gate electrode and the p-type channel. It is these **three** materials that give the MOSFET its name—Metal (Gate electrode) Oxide (SiO_2) Semiconductor (p-type channel) FET.
Creating a Channel for Current Flow

When we first look at an NMOS device, it appears that no current can flow from the Drain electrode to the Source electrode (or vice versa) as we must contend with two \(p-n \) junctions!

* Current seemingly cannot flow into channel from the Drain, as this would require current flowing from an \(n \)-type (cathode) region into a \(p \)-type (anode) region.

* Likewise, current cannot flow into channel from the Source, as this would require current flowing from an \(n \)-type (cathode) region into a \(p \)-type (anode) region.

* Recall that we have previously determined that current **cannot** flow into (or out of) the channel from (into) the gate, as the SiO2 layer is a very good insulator!
A: An NMOS device would indeed be useless if no current could flow from drain to source. However, we can modify the channel so that this current can indeed flow!

We must induce a channel—that is, create a thin layer of n-type Si connecting the source and drain!

To do this, we place a positive voltage at the gate electrode. This creates an electric field within the p-type substrate, which pushes the positively charged holes in the p-type substrate away from the gate electrode—a depletion region is formed in the Silicon under the gate!
The electric field under the gate electrode will repel positively charged holes, but will attract negatively charged free electrons!

Q: I see! The minority carriers in the p-type substrate (i.e., free electrons) are attracted to the gate electrode!

A: True! But we also find that many of the free electrons attracted to the gate come from the heavily doped n^+ wells under the source and drain electrodes.

* Of course, there is a Silicon Dioxide insulator separating the gate electrode and the Silicon substrate, so the free-electrons attracted by the gate electrode simply “pile up” at the top of the Silicon substrate, just under the SiO$_2$ layer.

* The result is an “inversion layer”—A thin layer in the p-type silicon where the majority carriers are actually free electrons!

* This inversion layer forms a n-type conducting channel connecting the n^+ Silicon well under the drain to the n^+ Silicon well under the source. By applying a positive voltage to the gate, we have induced a conducting channel!

In other words, current flowing from drain to source no longer encounters any $p-n$ junctions!
Q: So, will any positive gate voltage suffice for inducing a channel, or must this gate voltage be somehow sufficiently large?

A: The later. The gate voltage must be sufficiently large to create an inversion layer—it must be sufficiently large to *induce* a conducting channel.

In fact, the voltage value must exceed some **threshold**.

First some **definitions**:

\[V_G = \text{The gate electrode potential with respect to ground.} \]

\[V_S = \text{The source electrode potential with respect to ground.} \]

\[V_{GS} = V_G - V_S = \text{The gate electrode potential with respect to the source.} \]

We find that for a channel to be induced with in an **NMOS** device, the voltage \(V_{GS} \) must exceed a **threshold voltage**:

\[V_{GS} > V_t \quad \text{to induce an NMOS channel} \]
Moreover, we find that the amount by which v_{GS} exceeds the threshold voltage is a very important parameter for determining NMOS behavior. We call this value the excess gate voltage—this value is very important!

$$v_{GS} - V_t = \text{excess gate voltage}$$

Thus, we can say:

$$v_{GS} - V_t > 0 \quad \text{to induce an NMOS channel}$$
Applying a Drain Voltage to an NMOS Device

Say we apply a voltage at the gate of an NMOS device that is sufficiently large to induce a conducting channel (i.e., $V_{GS} - V_t > 0$).

Now, say that we additionally place a voltage at the NMOS drain electrode, such that:

$$V_{DS} > 0$$

where:

$$V_{DS} = V_D - V_S \equiv \text{Drain-to-Source Voltage}$$

Now guess what happens—current begins to flow through the induced channel!

Q: Current! I thought current could not flow because of the two p-n junctions in the NMOS device!

A: Remember, that was before we applied a sufficient gate voltage. With this voltage applied, an n-type channel is induced, forming a conducting channel from drain to source!
Recall that because of the SiO$_2$ layer, the gate current is zero (i.e., $i_G = 0$).

Thus, all current entering the drain will exit the source. We therefore conclude that:

$$i_S = i_D$$

As a result, we refer to the channel current for NMOS devices as simply the drain current i_D.

Q: So, I see that you have now defined current i_D and voltages v_{GS} and v_{DS}. Just how are these parameters related?

A: First, we find that an increasing v_{GS} or, more specifically, an increasing excess gate voltage $v_{GS} - V_t$ will result in a higher channel conductivity (in other words, a lower channel resistivity).

Thus, we find that the drain current i_D will increase as a positive excess gate voltage $v_{GS} - V_t$ increases (assuming that $v_{DS} > 0$).

This process, of increasing the induced channel conductivity by increasing the excess gate voltage, is otherwise known as channel enhancement. This is where the enhancement MOSFET gets its name!
Q: OK, but what about the relationship between drain current i_D and voltage v_{DS}?

A: This relationship is a little complicated! Generally speaking, however, a positive v_{DS} results in a positive i_D, and the larger the v_{DS}, the larger the drain current i_D.

More specifically, we find that when v_{DS} is small (we'll see how small later), the drain current will be directly proportional to the voltage drain to source v_{DS}.

$$i_D \propto v_{DS} \text{ if } v_{DS} \text{ small}$$

In other words, if v_{DS} is zero, the drain current i_D is zero. Or, if the voltage v_{DS} increases by 10%, the drain current will likewise increase by 10%. Note this is just like a resistor!

$$i = \frac{v}{R} \therefore i \propto v$$

Thus, if (and only if!) v_{DS} is small, the induced channel behaves like a resistor—the current through the channel (i_D) is directly proportional to the voltage across it (v_{DS}).
In other words, we can (for small values of v_{DS}), define a **channel resistance** r_{DS}:

$$i_D \propto v_{DS}, \quad \frac{v_{DS}}{i_D} = r_{DS} \quad \text{(if v_{DS} small)}$$

Note that this resistance value depends on the **conductivity** of the induced channel—which in turn is dependent on the **excess gate voltage**!

In other words, the channel behaves like a **voltage controlled resistor** (provided v_{DS} is small):

$$r_{DS} = f(v_{GS} - v_t) \quad \text{if v_{DS} small}$$

Thus, if we were to **plot** drain current i_D versus v_{DS} for various excess gate voltages, we would see something like this:
Q: Yawn! It is apparent that an NMOS transistor is so simple that virtually any intergalactic traveler should be able to understand it. It’s just a voltage controlled resistor—right?

A: WRONG! Remember, channel resistance r_{DS} only has meaning if v_{DS} is small—and most often v_{DS} will not be small!

As v_{DS} increases from our presumably small value, we find that strange things start to happen in our channel!

Recall that primarily, the free-electrons in our inversion layer (the induced channel) were attracted to the gate from the heavily doped n+ Silicon regions under the drain and source.
But the gate now has competition in attracting these free electrons!

It was “easy” to attract free electrons to the gate when the gate electrode voltage was much larger than both the drain and source voltage (i.e., when $v_{gs} \gg v_{ds}$). But as the drain voltage increases, it begins to attract free electrons of its own!

Recall that positive current entering the drain will actually consist mainly of free electrons exiting the drain! As a result, the concentration of free-electrons in our inversion layer will begin to decrease in the vicinity of the drain.

In other words, increasing v_{ds} will result in decreasing channel conductivity!
Thus, increasing the v_{DS} will have \textbf{two effects} on the NMOS device:

1. Increasing v_{DS} will \textit{increase} the potential difference (voltage) across the conducting channel, an effect that works to \textit{increase} the drain current i_D.

2. Increasing v_{DS} will \textit{decrease} the conductivity of the induced channel, and effect that works to \textit{decrease} the drain current i_D.

For \textbf{small} values of v_{DS}, the second effect is \textbf{tiny}, so that the increase in drain current is \textit{directly proportional} to the increase in voltage v_{DS} (hence, we can define channel resistance r_{DS}). For example, a 10\% \textbf{increase} in v_{DS} will result in a 10\% \textbf{increase} in drain current.

However, as v_{DS} increases, the \textbf{second effect} will become more and more \textbf{pronounced}. We find then that the drain current will \textbf{no longer} be \textit{directly proportional} to the voltage v_{DS}. The reduction in channel conductivity will begin to "\textit{counteract}" the increase in potential across the channel.

For example, a 10\% \textbf{increase} in v_{DS} may result in only a 9\% \textbf{increase} in i_D. Likewise, if we increase v_{DS} another 10\%, the drain current may then increase \textbf{only} 8\% (and so on).
Eventually, we find that the an increase in v_{DS} will result in no further increase drain current i_D! Effect 2 will **completely** "counteract" effect 1, so that there is no more increase in drain current as v_{DS} increases.

When this occurs, we say that we have "pinched-off" the induced channel—in other words the channel is in pinch off.

Q: So, if we continue to increase v_{DS} after the channel is "pinched off", does the drain current actually begin to decrease?

A: NO! A interesting thing happens when the channel is in pinch off. As we further increase v_{DS}, the drain current i_D will remain unchanged (approximately)! That is, the drain current will be a constant (approximately) with respect to v_{DS}.
Note that there are three distinct channel conditions in for NMOS operation.

* Depending on the value of v_{GS}, we can have an induced channel, or no conducting channel at all!

* Then if we have an induced channel (i.e., $v_{GS} - V_t > 0$), (depending on the value of v_{DS}) the channel can be either be pinched-off or not!

Each of these three possibilities has a name—they are the names of our NMOS transistor modes!

1. **Cutoff** - When $v_{GS} - V_t < 0$, no channel is induced (no inversion layer is created), and so $i_D=0$. We call this mode **CUTOFF**.

2. **Triode** - When an induced channel is present (i.e., $v_{GS} - V_t > 0$), but the value of v_{DS} is not large enough to pinch-off this channel, the NMOS is said to be in **TRIODE** mode.

3. **Saturation** - When an induced channel is present (i.e., $v_{GS} - V_t > 0$), and the value of v_{DS} is large enough to pinch-off this channel, the NMOS is said to be in **SATURATION** mode.
We can summarize these modes in a table:

<table>
<thead>
<tr>
<th>MODE</th>
<th>INDUCED CHANNEL?</th>
<th>CHANNEL PINCH-OFF?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTOFF</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>TRIODE</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>SATURATION</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

- **Triode Region**: The region where the current i_D increases with increasing V_{DS} up to the pinch-off point.
- **Saturation Region**: The region where the current i_D reaches a maximum and remains constant as V_{DS} increases further.
PMOS and CMOS

In addition to an n-channel MOSFET device (i.e., NMOS), we can build p-channel MOSFET (i.e., PMOS) device.

The structure of a PMOS device is essentially the same as an NMOS transistor, except that wherever there was n-type Silicon there is now p-type Silicon—and wherever there was p-type Silicon there is now n-type Silicon!

Specifically, the PMOS channel is part of a n-type substrate lying between two heavily doped $p+$ wells beneath the source and drain electrodes.

Generally speaking, a PMOS transistor is only constructed in consort with an NMOS transistor. This “pair” of NMOS and PMOS transistors is known as Complementary MOSFETs—CMOS for short!
The operation of a PMOS transistor is in many ways similar to that of the NMOS device, but in many ways they are also quite different!

For example, for a PMOS device we find:

* To create an inversion layer in the n-type substrate, we must attract holes to the gate electrode.

* As a result, a p-type channel will be induced, connecting the p+ wells at the drain and the source.

* However, to attract holes toward the gate, the voltage ν_{GS} must be sufficiently negative! The threshold voltage V_t is thus a negative value, so that a channel is induced only if $\nu_{GS} < V_t$ (i.e., ν_{GS} is more negative than V_t^I).

* As a result, a channel is induced in a PMOS device only if the excess gate voltage $\nu_{GS} - V_t$ is negative (i.e., $\nu_{GS} - V_t < 0$).

* Likewise, we find that we typically get current to flow through this channel by making the voltage ν_{DS} negative. If we make the voltage ν_{DS} sufficiently negative, the p-type induced channel will pinch off.

* Note that when ν_{DS} is negative, the drain current will flow from the PMOS source, to the PMOS drain (i.e., exactly opposite that of the NMOS device with a positive ν_{DS}).
* Thus, for a PMOS device, we define current flowing from source to drain as positive current (i.e., exactly opposite that of the NMOS device).

The PMOS i_D vs. v_{DS} Curve