

How do we **analyze** circuits with junction diodes?

2 ways:

HO: Transcendental Solutions of Junction Diode <u>Circuits</u>

B. Approximate Solutions

To obtain a quick (but less accurate) solution, we replace all junction diodes with **approximate** circuit models.

1. 2. 3. <u>HO:</u> <u>HO:</u>	The : The : Cons	<u>Edeal D</u> <u>Consta</u> <u>Piecew</u>	<u>Diode</u> ant Va vise Li	<u>Mode</u> oltage inear	<u>I</u> Drop Model	Mode				
2. 3. <u>HO:</u> <u>HO:</u> <u>HO:</u>	The The Cons	<u>Edeal D</u> <u>Consta</u> <u>Piecew</u>	<u>Diode</u> ant Va vise Li ng the	<u>Mode</u> oltage inear	<u>I</u> Drop Model	Mode				
<u>HO:</u> <u>HO:</u> <u>HO:</u>	The The Cons	<u>Edeal D</u> <u>Consta</u> <u>Piecew</u>	<u>Diode</u> ant Va vise Li ng the	<u>Mode</u> oltage inear	<u>l</u> Drop Model	Mode				
<u>HO:</u> <u>HO:</u>	The The Cons	<u>Consta</u> <u>Piecew</u>	<u>ant Vo</u> vise Li ng the	oltage inear	Drop Model	Mode				
<u>H0:</u>	Cons	<u>Piecew</u>	<u>vise Li</u> ng the	inear PW/I	<u>Model</u>					
<u>H0:</u>	: Cons	<u>structin</u>	ng the	PW/I						
					Mode					
<u>Exa</u>	mple:	Constr	ructin	<u>g a P</u> \	<u>NL M</u>	<u>odel</u>				
<u>Exa</u>	<u>mple:</u>	Constr	<u>ructin</u>	<u>g a D</u>	iode S	<u>imall-s</u>	<u>Signal</u>	Mod	<u>el</u>	
Exa	mple:	Junct	tion D	oiode l	Model	<u>S</u>				
<u>Exa</u>										

C. Small-Signal Analysis

We often find that currents/voltages consist of two components: **DC** and **small-signal**.

HO: DC and Small-Signal Components

HO: DC and AC Impedance of Reactive Elements

Note that for the ideal diode or CVD model, the fb small-signal diode voltage is <u>always</u> zero!

$$e.g., v_D(t) = 0.7 V$$
 $\therefore V_D = 0.7 \text{ and } v_d(t) = 0.0$

HO: Small-Signal Circuit Analysis

HO: Steps for Small-Signal Circuit Analysis

Example: Junction Diode Small-Signal Analysis