11.5 Sense Amplifiers and Address Decoders

Reading Assignment: pp. 1038-1046

In addition to memory cells, RAM must likewise implement two other kinds of circuitry:

1. Sense Amplifiers

2. Address Decoders

Sense Amplifiers →

Address Decoders →

HO: Address Decoders
Address Decoders

We need some way of enabling (i.e., selecting) the row and column (i.e., word line and bit line) that we are interested in reading from, or writing to.

Recall if there are 2^M words in a computer memory, then each row can be specified with an M-bit address.

Likewise, if there are 2^N bits in a computer memory, then each column can be specified with an N-bit address.

Thus, we need some way of constructing an M-bit row decoder, as well as an N-bit row decoder.

The logic expression is straightforward—we wish to enable output line Y_n (or Y_m) if and only if the address bits $A_0, A_1, A_2, A_3, ...$ have the proper value.

Example:

Consider a small amount of RAM memory consisting of just 16 memory words. Thus, each word can be specified with only an $M=4$ bit address (i.e., $2^4 = 16$).
Say we wish to build an address decoder to select word 9 (i.e., set $Y_9 = 1$) if, and only if, the address is a binary 9, i.e.:

$A_3 = 1, A_2 = 0, A_1 = 0, A_0 = 1$

Thus, the Boolean Logic description of this decoder is:

$$Y_9 = A_3 \overline{A_2} \overline{A_1} A_0$$

Likewise, for other word enable lines:

$$Y_0 = \overline{A_3} \overline{A_2} \overline{A_1} A_0$$
$$Y_1 = \overline{A_3} A_2 \overline{A_1} A_0$$
$$Y_2 = \overline{A_3} A_2 A_1 A_0$$
$$\vdots$$
$$Y_{15} = A_3 A_2 A_1 A_0$$

Q: Hey! Don’t we know how to build logic circuits to realize these Boolean expressions?

A: Yup! We learned how to do this in section 10.3. Often, address decoders are complex enough that we choose to use NMOS technology to design them.
We must construct one of these decoders for each and every word line and bit line (i.e., row and column). In other words, we must construct 2^M row decoders, and 2^N bit column decoders.