\rightarrow

4.2 Current Voltage Characteristics

Reading Assignment: pp. 248-262

* Often, the body and source terminals are tied (connected) together.

* And sometimes, the effect of the body terminal is insignificant, so we **ignore** it!

A. MOSFET Circuit Symbols

HO: The Circuit Symbols of Enhancement MOSFETs

B. i_D Dependence on v_{DS} and v_{GS}

A: <u>HO: A Mathematical Description of MOSFET</u> <u>Behavior</u>

Q:

1/2

Q:

A: HO: Channel Resistance for Small v_{DS}

C. Drain Output Resistance

Q: So, for saturation, $i_D = K (v_{GS} - V_t)^2$, and thus i_D is **completely** independent of v_{DS} , right?

A:

HO: Drain Output Resistance

D. The Body Effect

Q: So, the Body and Source are **always** tied together in a MOSFET?

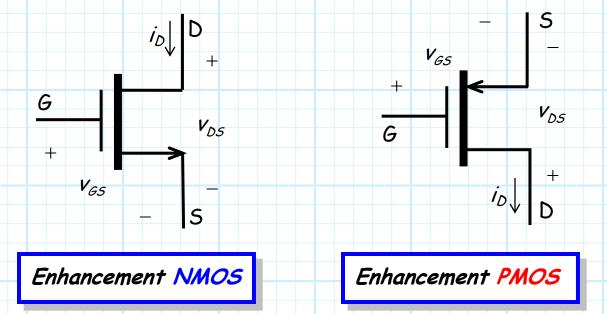
A:

HO: The Body Effect

<u>The Circuit Symbols of</u> <u>Enhancement MOSFETs</u>

If we assume that the **body** and the **source** of a MOSFET are tied (i.e., **connected**) together, then our **four**-terminal device becomes a **three**-terminal device!

The circuit **symbols** for these **three-terminal** devices (NMOS and PMOS) are shown below:



Study these symbols carefully, so **you** can quickly identify the symbol and the name of each terminal (e.g., source S, gate G).

Likewise, make sure **you** can correctly label the relevant currents and voltages—including the polarity of the voltages and the direction of the current i_D !

Jim Stiles

<u>A Mathematical</u> <u>Description of</u> <u>MOSFET Behavior</u>

Q: We've learned an awful lot about enhancement MOSFETs, but we still have yet to establish a mathematical relationships between i_D , v_{GS} , or v_{DS} . How can we determine the correct numeric values for MOSFET voltages and currents?

A: A mathematical description of enhancement MOSFET behavior is relatively straightforward! We actually need to concern ourselves with just **3 equations**.

Specifically, we express the drain current i_D in terms of v_{GS} and v_{DS} for each of the **three MOSFET modes** (i.e., Cutoff, Triode, Saturation).

Additionally, we need to mathematically define the **boundaries** between each of these three modes!

1/8

But first, we need to examine some fundamental **physical parameters** that describe a MOSFET device. These parameters include:

$$k' \doteq$$
 Process Transconductance Parameter $\left\lceil A/V^2 \right\rceil$

 $\frac{W}{I}$ = Channel Aspect Ratio

The Process Transconductance Parameter k' is a constant that depends on the process technology used to fabricate an integrated circuit. Therefore, all the transistors on a given substrate will typically have the **same value** of this parameter.

The Channel Aspect Ratio W/L is simply the ratio of channel width W to channel length L. This is the MOSFET device parameter that can be **altered** and **modified** by the circuit designer to satisfy the requirements of the given circuit or transistor.

We can likewise combine these parameter to form a **single** MOSFET device parameter *K* :

$$\boldsymbol{K} = \frac{1}{2} \boldsymbol{k}' \left(\frac{\boldsymbol{W}}{\boldsymbol{L}} \right) \qquad \qquad \left[\boldsymbol{A}_{\boldsymbol{V}^2} \right]$$

Now we can mathematically describe the behavior of an enhancement MOSFET! We'll do this **one mode at a time**.

<u>CUTOFF</u>

This relationship is very simple—if the MOSFET is in **cutoff**, the drain current is simply **zero**!

$$i_{D} = 0$$
 (CUTOFF mode)

TRIODE

When in **triode** mode, the drain current is dependent on **both** v_{GS} and v_{DS} :

$$i_{D} = k' \left(\frac{W}{L}\right) \left[\left(v_{GS} - V_{t} \right) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$
 (TRIODE mode)
= $K \left[2 \left(v_{GS} - V_{t} \right) v_{DS} - v_{DS}^{2} \right]$

This equation is valid for **both** NMOS and PMOS transistors (**if** in TRIODE mode). Recall that for **PMOS** devices, the values of v_{GS} and v_{DS} are **negative**, but note that this will result (correctly so) in a **positive** value of i_D .

SATURATION

When in **saturation** mode, the drain current is (approximately) dependent on v_{GS} only:

$$\begin{split} i_{b} &= \frac{1}{2} \kappa' \left(\frac{W}{L} \right) (v_{cs} - V_{r})^{2} \qquad (SATURATION mode) \\ &= \kappa (v_{cs} - V_{r})^{2} \end{split}$$
Thus, we see that the drain current in saturation is proportional to excess gate voltage squared!
This equation is likewise valid for both NMOS and PMOS transistors (if in SATURATION mode).
Q: OK so know we know the expression for drain current i_{b} in each of the three MOSFET modes, but how will we know what mode the MOSFET is in?
A: We must determine the mathematical boundaries of each mode. Just as before, we will do this one mode at a time!
$$\frac{CUTOFF}{V_{cs}} = V_{r} < 0 \text{ then NMOS in CUTOFF} \end{split}$$

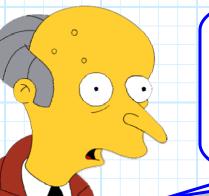
Like wise, for an enhancement **PMOS** device:

if $v_{GS} - V_{t} > 0$ then PMOS in CUTOFF

TRIODE

For triode mode, we know that a channel **is** induced (i.e., an inversion layer is present).

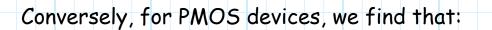
Additionally, we know that when in triode mode, the voltage v_{DS} is not sufficiently large for NMOS, or sufficiently small (i.e., sufficiently negative) for PMOS, to pinch off this induced channel.



Q: But how large does v_{DS} need to be to pinch off an NMOS channel? How can we determine **if** pinch off has occurred?

A: The answer to that question is surprisingly simple. The induced channel of an NMOS device is pinched off if the voltage v_{DS} is greater than the excess gate voltage! I.E.:

if $v_{DS} > v_{GS} - V_t$ then NMOS channel is "pinched off"



if $v_{DS} < v_{GS} - V_t$ then PMOS channel is "pinched off"

These statements of course mean that an NMOS channel is not pinched off if $v_{DS} < v_{GS} - V_t$, and a PMOS channel is not pinched off if $v_{DS} > v_{GS} - V_t$. Thus, we can say that an NMOS device is in the TRIODE mode:

if
$$v_{GS} - V_t > 0$$
 and $v_{DS} < v_{GS} - V_t$ then NMOS in TRIODE

Similarly, for PMOS:

if $v_{GS} - V_t < 0$ and $v_{DS} > v_{GS} - V_t$ then PMOS in TRIODE

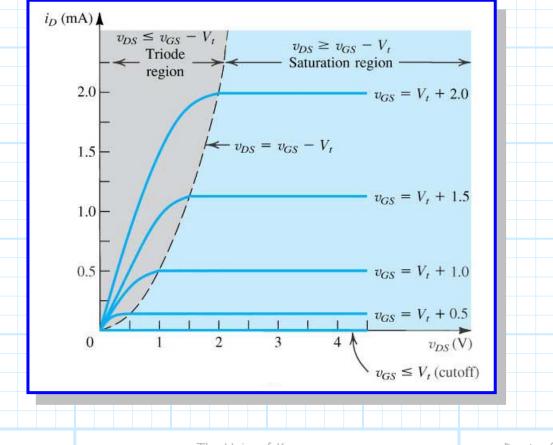
SATURATION

Recall for SATURATION mode that a channel **is** induced, and that channel **is** pinched off.

Thus, we can state that for NMOS: if $v_{GS} - V_{t} > 0$ and $v_{DS} > v_{GS} - V_{t}$ then NMOS in SAT. And for PMOS: if $v_{GS} - V_t < 0$ and $v_{DS} < v_{GS} - V_t$ then PMOS in SAT. We now can construct a complete (continuous) expression relating drain current i_D to voltages v_{DS} and v_{GS} . For an NMOS device, this expression is: if $V_{GS} - V_t < 0$ $i_{D} = \begin{cases} \mathcal{K} \Big[2 \big(v_{GS} - V_{t} \big) v_{DS} - v_{DS}^{2} \Big] & \text{if } v_{GS} - V_{t} > 0 \text{ and } v_{DS} < v_{GS} - V_{t} \\ \mathcal{K} \big(v_{GS} - V_{t} \big)^{2} & \text{if } v_{GS} - V_{t} > 0 \text{ and } v_{DS} > v_{GS} - V_{t} \end{cases}$ Jim Stiles The Univ. of Kansas Dept. of EECS Likewise, for a **PMOS** device we find:

$$i_{D} = \begin{cases} 0 & \text{if } v_{GS} - V_{t} > 0 \\ \mathcal{K} \left[2 \left(v_{GS} - V_{t} \right) v_{DS} - v_{DS}^{2} \right] & \text{if } v_{GS} - V_{t} < 0 \text{ and } v_{DS} > v_{GS} - V_{t} \\ \mathcal{K} \left(v_{GS} - V_{t} \right)^{2} & \text{if } v_{GS} - V_{t} < 0 \text{ and } v_{DS} < v_{GS} - V_{t} \end{cases}$$

Let's take a look at what these expressions look like when we **plot** them. Specifically, for an NMOS device let's plot i_D versus v_{DS} for different values of v_{GS} :



<u>Channel Resistance for</u> <u>Small Vds</u>

Recall voltage v_{DS} will be **directly proportional** to i_D , provided that:

- 1. A conducting channel has been induced.
- 2. The value of *v*_{DS} is small.

Note for this situation, the MOSFET will be in triode region.

Recall also that as we **increase** the value of v_{DS} , the conducting channel will begin to **pinch off**—the current will **no longer** be directly proportional to v_{DS} .

Specifically, we have previously determined that there are **two phenomena** at work as we **increase** v_{DS} while in the **triode** region:

1. Increasing v_{DS} will increase the potential difference across the conducting channel, an effect that works to proportionally increase the drain current i_D

2. Increasing v_{DS} will decrease the conductivity of the induced channel, an effect that works to decrease the drain current i_D .

Q: That's quite a coincidence! There are two physical phenomena at work as we increase v_{DS}, and there are two terms in the triode drain current equation!

$$i_{D} = \mathcal{K} \Big[2 \big(\mathbf{v}_{GS} - \mathbf{V}_{t} \big) \mathbf{v}_{DS} - \mathbf{v}_{DS}^{2} \Big] \\ = 2 \mathcal{K} \big(\mathbf{v}_{GS} - \mathbf{V}_{t} \big) \mathbf{v}_{DS} - \mathcal{K} \mathbf{v}_{DS}^{2} \Big]$$

A: This is **no** coincidence! **Each** term of the triode current equation effectively describes **one** of these two physical phenomena.

We can thus **separate** the triode drain current equation into **two components**:

$$\dot{I}_D = \dot{I}_{D1} + \dot{I}_{D2}$$

where:

$$\dot{v}_{D1} = 2K(v_{GS} - V_t)v_{DS}$$

and:

$$i_{D2} = -K v_{DS}^2$$

Let's look at each term individually.

$i_{D1} = 2K(v_{GS} - V_{t})v_{DS}$

We first note that this term is **directly proportional** to v_{DS} if v_{DS} increases 10%, the value of this term will increase 10%. Note that this is true **regardless** of the magnitude of v_{DS} !

Plotting this term, we get:

1/D1

 $i_{D1} = 2K(v_{GS} - V_t)v_{DS}$

VDS

 $V_{GS} - V_{t}$

It is evident that this term describes the **first** of our phenomenon:

1. Increasing v_{DS} will increase the potential difference across the conducting channel, an effect that works to proportionally increase the drain current i_{D} .

In other words, this first term would accurately describe the relationship between i_D and v_{DS} if the MOSFET induced channel behaved like a **resistor**!

But of course, it does not behave like a resistor! The second term i_{D2} describes this very nonresistor-like behavior.

 $i_{D2} = -K v_{DS}^2$

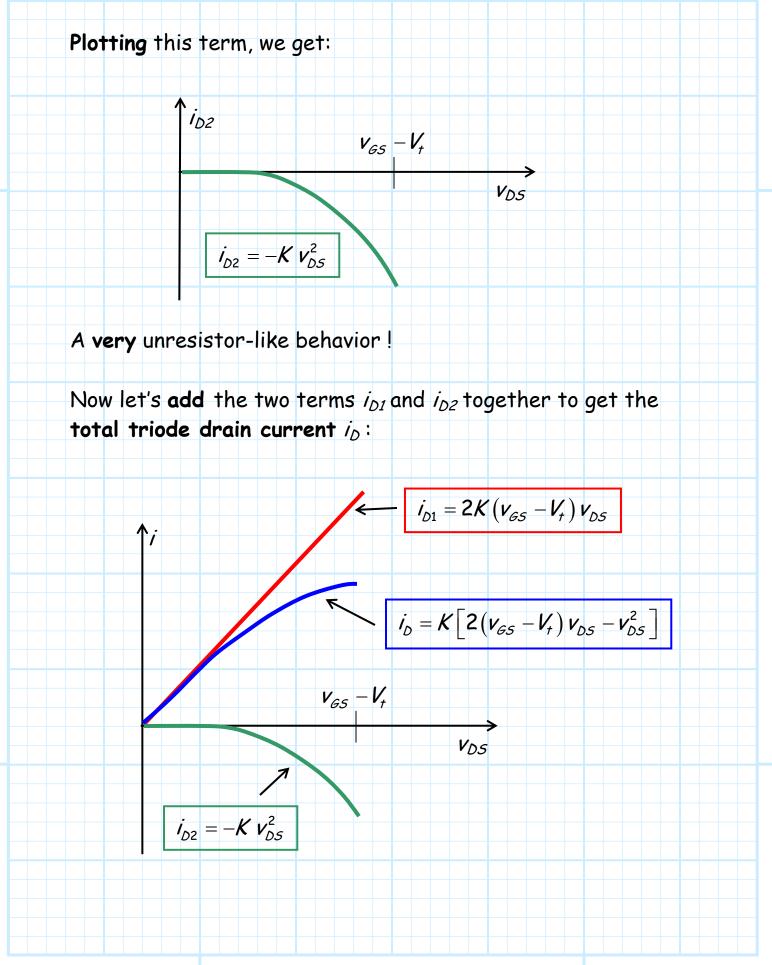
Q: My Gosh! It is apparent that i_{D2} is **not** directly proportional to v_{D5} , but instead proportional to v_{D5} squared!!

Moreover, the minus sign out front means that as v_{DS} increases, i_{D2} will actually **decrease**! This behavior is **nothing** like a resistor—what the heck is going on here??

A: This second term i_{D2} essentially describes the result of the second phenomena:

2. Increasing v_{DS} will decrease the conductivity of the induced channel, an effect that works to decrease the drain current i_D .

5/10



It is apparent that the second term i_{D2} works to **reduce** the total drain current from its "**resistor-like**" value i_{D1} . This of course is physically due to the **reduction in channel conductivity** as v_{DS} increases.

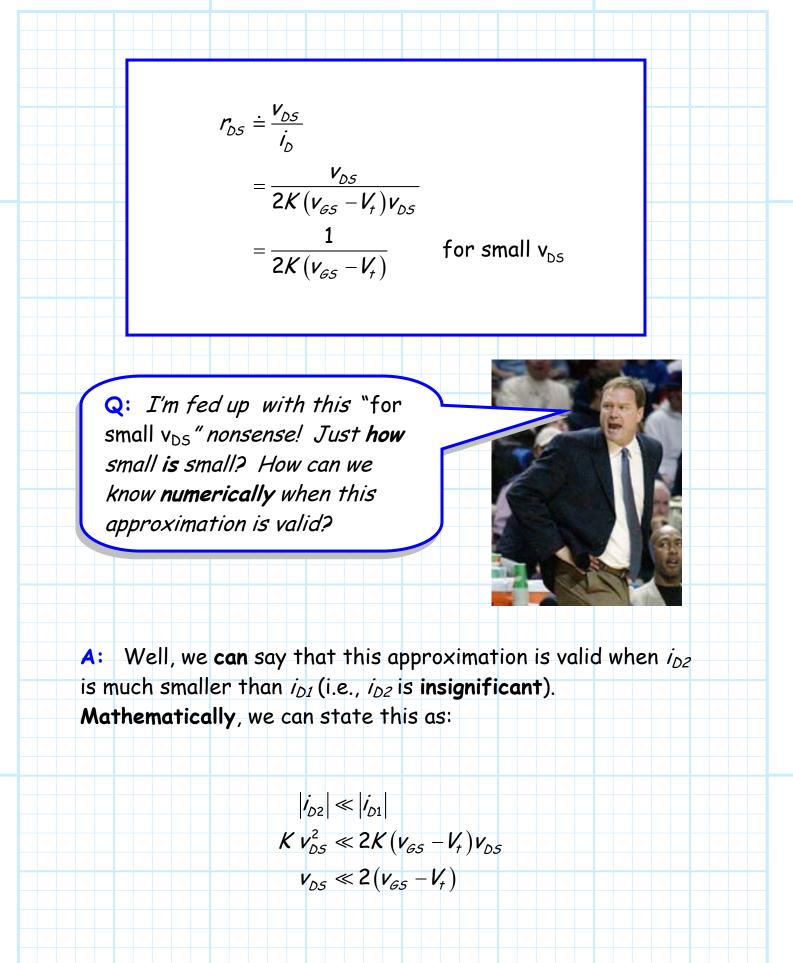
Q: But look! It appears to me that for small values of v_{DS} , the term i_{D2} is very small, and thus $i_D \approx i_{D1}$ (when v_{DS} is small)!

A: Absolutely **true**! Recall this is **consistent** with our earlier discussion about the induced channel—the channel conductivity begins to significantly **degrade** only when *v*_{DS} becomes **sufficiently large**!

Thus, we can conclude:

$$\begin{split} \dot{i}_{D} &\approx \dot{i}_{D1} \\ &= 2\mathcal{K} \left(\mathbf{v}_{GS} - \mathbf{V}_{t} \right) \mathbf{v}_{DS} \\ &= \mathcal{K}' \left(\frac{\mathcal{W}}{\mathcal{L}} \right) \left(\mathbf{v}_{GS} - \mathbf{V}_{t} \right) \mathbf{v}_{DS} \quad \text{for small } \mathbf{v}_{DS} \end{split}$$

Moreover, we can (for small v_{DS}) approximate the induced channel as a resistor r_{DS} of value $r_{DS} = v_{DS} / i_{DS}$:



Thus, we can approximate the induced channel as a resistor r_{DS} when v_{DS} is much less than the twice the excess gate voltage: $\dot{I}_D \approx \dot{I}_{D1}$ $= 2K(v_{GS} - V_{t})v_{DS}$ $= k' \left(\frac{W}{I}\right) (v_{GS} - V_{T}) v_{DS} \quad \text{for } v_{DS} \ll 2 (v_{GS} - V_{T})$ and: $r_{DS} = \frac{1}{2K(v_{GS} - V_{t})}$ $=\frac{1}{k' (W/) (v_{GS} - V_{t})} \quad \text{for } v_{DS} \ll 2(v_{GS} - V_{t})$ Q: There you go **again!** The statement $v_{DS} \ll 2(v_{GS} - V_t)$ is only slightly more *helpful than the statement* "when v_{DS} is small". Precisely how much smaller than twice the excess gate voltage must v_{DS} be in order for our approximation to be accurate?

The Univ. of Kansas

9/10

A: We cannot say **precisely** how much smaller v_{DS} needs to be in relation to $2(v_{GS}-V_t)$ unless we state **precisely** how **accurate** we require our approximation to be!

For example, if we want the **error** associated with the approximation $i_D \approx i_{D1} = 2K(v_{GS} - V_t)v_{DS}$ to be **less than 10%**, we find that we require the voltage v_{DS} to be **less than 1/10** the value $2(v_{GS} - V_t)$.

In other words, if:

$$v_{DS} < \frac{2(v_{GS} - V_t)}{10} = \frac{v_{GS} - V_t}{5}$$

we find then that i_{D2} is less than 10% of i_{D1} :

$$\dot{I}_{D2} < \frac{I_{D1}}{10}$$

This **10% error criteria** is a **typical** "rule-of thumb" for many approximations in electronics. However, this does **not** mean that it is the "correct" criteria for determining the validity of this (or other) approximation.

For some applications, we might require better accuracy. For example, if we require less than 5% error, we would find that $v_{DS} < (v_{GS} - V_{f})/10$.

However, **using the 10% error criteria**, we arrive at the conclusion that:

$$i_{D} \approx i_{D1}$$

$$= 2K(v_{\sigma S} - V_{r})v_{DS}$$

$$= k' \left(\frac{W}{L}\right)(v_{\sigma S} - V_{r})v_{DS} \text{ for } v_{DS} < (v_{\sigma S} - V_{r})/5$$
and:
$$I_{DS} = \frac{1}{2K(v_{\sigma S} - V_{r})}$$

$$= \frac{1}{k'(W/L)(v_{\sigma S} - V_{r})} \text{ for } v_{DS} < (v_{\sigma S} - V_{r})/5$$
We find that we should use these approximations when we can—it can make our circuit analysis much easier!
$$See, the thing is, you should use these approximations when we can—it can make our circuit analysis much easier!$$

Drain Output Resistance

I fibbed!

I have been saying that for a MOSFET in saturation, the drain current is independent of the drain-to-source voltage v_{DS} . I.E.:

$$\dot{I}_{D} = K \left(V_{GS} - V_{t} \right)^{2}$$

In reality, this is only approximately true!

Due to a phenomenon known as channel-length modulation, we find that drain current i_D is slightly dependent on v_{DS} . We find that a more accurate expression for drain current for a MOSFET in saturation is:

$$\dot{i_{D}} = \mathcal{K} \left(\mathcal{V_{GS}} - \mathcal{V_{t}} \right)^{2} \left(1 + \lambda \, \mathcal{V_{DS}} \right)$$

Where the value λ is a MOSFET **device parameter** with units of 1/V (i.e., V⁻¹). Typically, this value is small (thus the dependence on v_{DS} is slight), ranging from 0.005 to 0.02 V⁻¹.

Often, the channel-length modulation parameter λ is expressed as the **Early Voltage** V_A , which is simply the inverse value of λ :

$$V_{\mathcal{A}} = \frac{1}{\lambda} \quad [V]$$

Thus, the drain current for a MOSFET in **saturation** can **likewise** be expressed as:

$$\dot{I}_{D} = \mathcal{K} \left(\mathcal{V}_{GS} - \mathcal{V}_{T} \right)^{2} \left(1 + \frac{\mathcal{V}_{DS}}{\mathcal{V}_{A}} \right)$$

Now, let's **define** a value I_D , which is simply the drain current in saturation **if** no channel-length modulation actually occurred—in other words, the **ideal** value of the drain current:

$$\boldsymbol{I}_{\mathcal{D}} \doteq \boldsymbol{K} \left(\boldsymbol{v}_{\mathcal{GS}} - \boldsymbol{V}_{\mathcal{T}} \right)^2$$

Thus, we can **alternatively** write the drain current in saturation as:

$$i_{\mathcal{D}} = \mathcal{I}_{\mathcal{D}} \left(1 + \frac{V_{\mathcal{DS}}}{V_{\mathcal{A}}} \right)$$

This **explicitly** shows how the drain current behaves as a function of voltage v_{DS} . For example, consider a **typical** case case where v_{DS} =5.0 V and V_A = 50.0 V. We find that:

$$i_{D} = I_{D} \left(1 + \frac{V_{DS}}{V_{A}} \right)$$
$$= I_{D} \left(1 + \frac{5.0}{50.0} \right)$$
$$= I_{D} \left(1 + 0.1 \right)$$
$$= 1.1 I_{D}$$

In other words, the drain current is **10% larger** than its "ideal" value I_D .

We can thus interpret the value v_{DS}/V_A as the **percent** increase in drain current i_D over its ideal (i.e., no channellength modulation) saturation value $I_D = K (v_{GS} - V_t)^2$.

Thus, as v_{DS} increases, the drain current i_D will increase slightly.

Now, let's introduce a **third** way (i.e. in addition to λ , V_A) to describe the "extra" current created by channel-length modulation. Define the **Drain Output Resistance** r_o :

$$r_o \doteq \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$$

Using this definition, we can write the **saturation** drain current expression as:

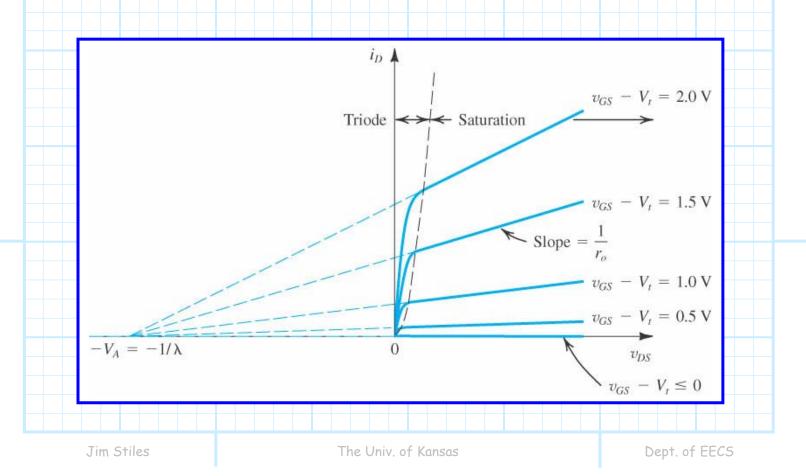
 $\dot{I}_{D} = I_{D} \left(1 + \frac{V_{DS}}{V_{A}} \right)$

 $=I_{D}+\frac{I_{D}}{V_{A}}V_{DS}$

 $=I_{D}+\frac{V_{DS}}{r_{c}}$

Thus, we **interpret** the "extra" drain current (due to channellength modulation) as the current flowing through a **drain output resistor** r_{o} .

 $= \mathcal{K} \left(\mathcal{V}_{GS} - \mathcal{V}_{t} \right)^{2} + \frac{\mathcal{V}_{DS}}{\mathcal{V}_{t}}$



Finally, there are **three** important things to remember about channel-length modulation:

* The values λ and V_A are MOSFET device parameters, but drain output resistance r_o is not (r_o is dependent on I_D !).

* Often, we "**neglect** the effect of channel-length modulation", meaning that we use the **ideal** case for saturation- $i_D = K(v_{GS} - V_t)^2$. Effectively, we assume that $\lambda = 0$, meaning that $V_A = \infty$ and $r_o = \infty$ (i.e., **not** $V_A = 0$ and $r_o = 0$!).

* The drain output resistance r_o is **not** the same as channel resistance r_{DS} ! The two are different in **many**, **many** ways:

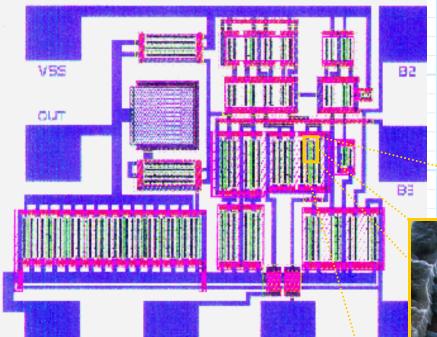
$$\dot{V}_{D} = \mathcal{K} \left(\mathcal{V}_{GS} - \mathcal{V}_{t} \right)^{2} + \frac{\mathcal{V}_{DS}}{\mathcal{V}_{o}}$$
 for a MOSFET in saturation

 $i_{D} = \frac{v_{DS}}{r_{DS}}$ for a MOSFET in **triode** and v_{DS} small

$$\therefore r_o \neq r_{DS}$$
 |||||||

The Body Effect

In an integrated circuit using MOSFET devices, there can be **thousands** or **millions** of transistors.



As a result, there are thousands or millions of MOSFET **source terminals**!

But, there is only **one** Body (B) the Silicon **substrate**.

Thus, if we were to tie (connect) **all** the MOSFET source terminals to the single body terminal, we would be connecting **all** the MOSFET source terminals to each other! > This would almost certainly result in a useless circuit!

Thus, for integrated circuits, the MOSFET source terminals are **not** connected to the substrate body.

Q: Yikes! What happens to MOSFET behavior if the source is **not** attached to the body ??

A: We must consider the evil MOSFET Body Effect!

We note that the voltage v_{SB} (voltage source-to-body) is **not** necessarily equal to zero (i.e., $v_{SB} \neq 0$)! Thus, were back to a **four-terminal** MOSFET device.

There are **many** ramifications of this body effect; perhaps the most significant is with regard to the **threshold voltage** V_{f} .

We find that when $v_{SB} \neq 0$, a more **accurate** expression of the threshold voltage is:

$$V_{t} = V_{t0} + \gamma \sqrt{2\phi_{f} + v_{SB}} - \gamma \sqrt{2\phi_{f}}$$

where γ and ϕ_{f} are MOSFET device parameters.

Note the value V_{tO} is the value of the threshold voltage when $v_{SB} = 0$, i.e.:

 $V_t = V_{t0}$ when $v_{SB} = 0.0$

Thus, the value V_{t0} is simply the value of the device parameter V_t that we have been calling the threshold voltage up till now!

In other words, V_{t0} is the value of the threshold voltage when we **ignored** the Body Effect, or when v_{SB} = 0.

It is thus evident that the term:

$$\gamma \sqrt{2\phi_f + v_{SB}} - \gamma \sqrt{2\phi_f}$$

simply expresses an **extra** value added to the "ideal" threshold voltage V_{t0} when $v_{SB} \neq 0$.

For many cases, we find that this Body Effect is relatively insignificant, so we will (unless **otherwise** stated) **ignore the Body Effect**.

However, do **not** conclude that the Body Effect is **always** insignificant—it can in some cases have a tremendous impact on MOSFET circuit performance!