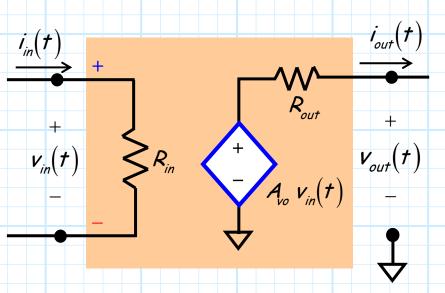
<u>The Ideal</u>

Operational Amplifier

We begin by considering the equivalent circuit of an ideal op-amp:



Note that **output** voltage is defined with respect to **ground** potential, while the input voltage is simply the potential **difference** between the **plus** (+) terminal and the **minus** (-) terminal.

Very large and very small

Of course, we have **three** parameters in this circuit model: input resistance, output resistance, and open circuit voltage gain.

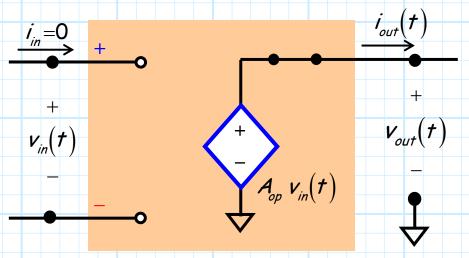
Q: So what are the **ideal** attributes (R_{in} , R_{out} , and A_{vo}) of an operational amplifier? In other words, what is the **perfect** op-amp?

A1: The input resistance of a perfect op-amp is infinitely large (i.e., $R_{in} = \infty$).

A2: The output resistance of a perfect op-amp is zero (i.e., $R_{out} = 0$).

A3: The open-circuit voltage gain of a perfect op-amp is very large, approaching infinity $(A_{o} \cong \infty)!$

Thus, the equivalent circuit model of an ideal op-amp is:



Here we have changed the notation of the open-circuit voltage gain.

The value A_{op} is used, where:

$$A_{op} \doteq \lim_{A_o \to \infty} A_{vo}$$

In other words, the gain value A_{op} is unfathomably large!

Ideal at all frequencies!

Note then:

1. Since the input resistance is infinite, the input current is zero—always!

2. Since the output resistance is zero, the **output** voltage is **equal** to the **open-circuit** output voltage, even when the output load is **not** an open circuit! I.E.,:

 $v_{out}(t) = A_{op} v_{in}(t) \quad \leftarrow \text{ regardless of } i_{out}!$

Q: What about the **bandwidth** of this "ideal" op-amp; is the model **only** valid for **low-frequencies** ?

A: Not for an ideal op-amp!

The bandwidth of an ideal op-amp is likewise infinite.

It just seems so perfect

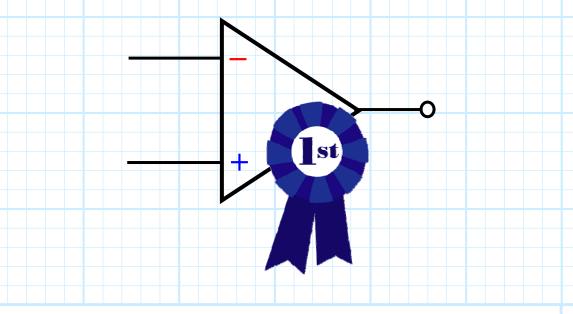
Q: Wow! Unfathomably **high** voltage gain, **infinite** input resistance (impedance), **zero** output resistance (impedance), and:

$$V_{out}(t) = A_{op} V_{in}(t)$$

regardless of the frequency spectrum $V_{in}(\omega)$.

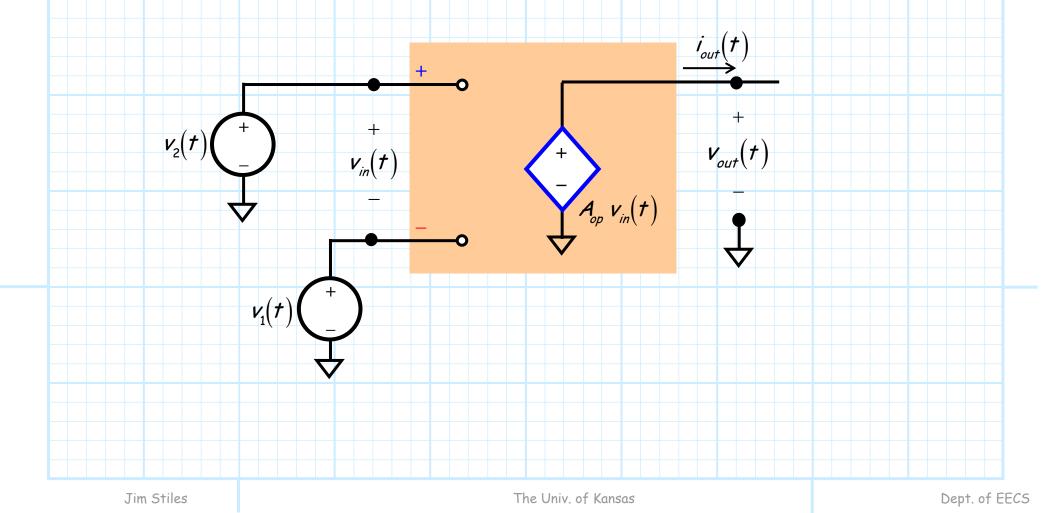
This sounds like the perfect voltage amplifier!

A: It is! That's why we refer to it as the ideal op-amp.



Why the output but not the input?

- **Q:** So why isn't the input voltage with respect to **ground** potential? Why is not the minus (-) input terminal **connected to ground**?
- A: Generally speaking, we find that **two different voltages** will be connected to the two different input terminals:



The input is a differential voltage

From KVL it is clear (right?) that the input voltage is:

$$\boldsymbol{v}_{in}(\boldsymbol{t}) = \boldsymbol{v}_2(\boldsymbol{t}) - \boldsymbol{v}_1(\boldsymbol{t})$$

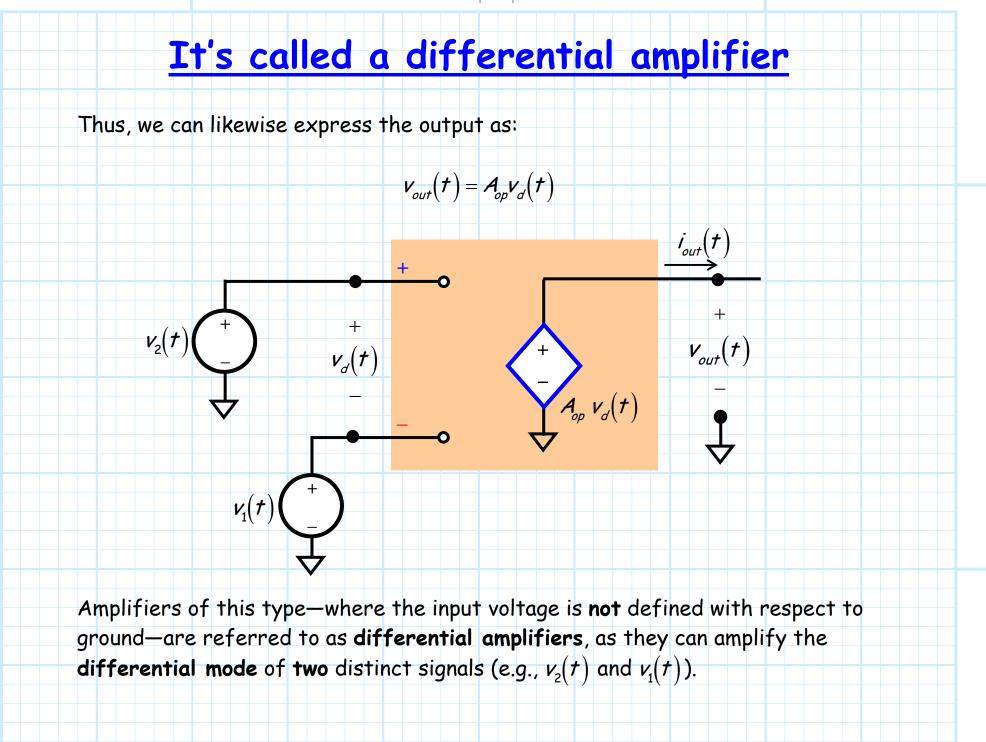
And so the **output** voltage is:

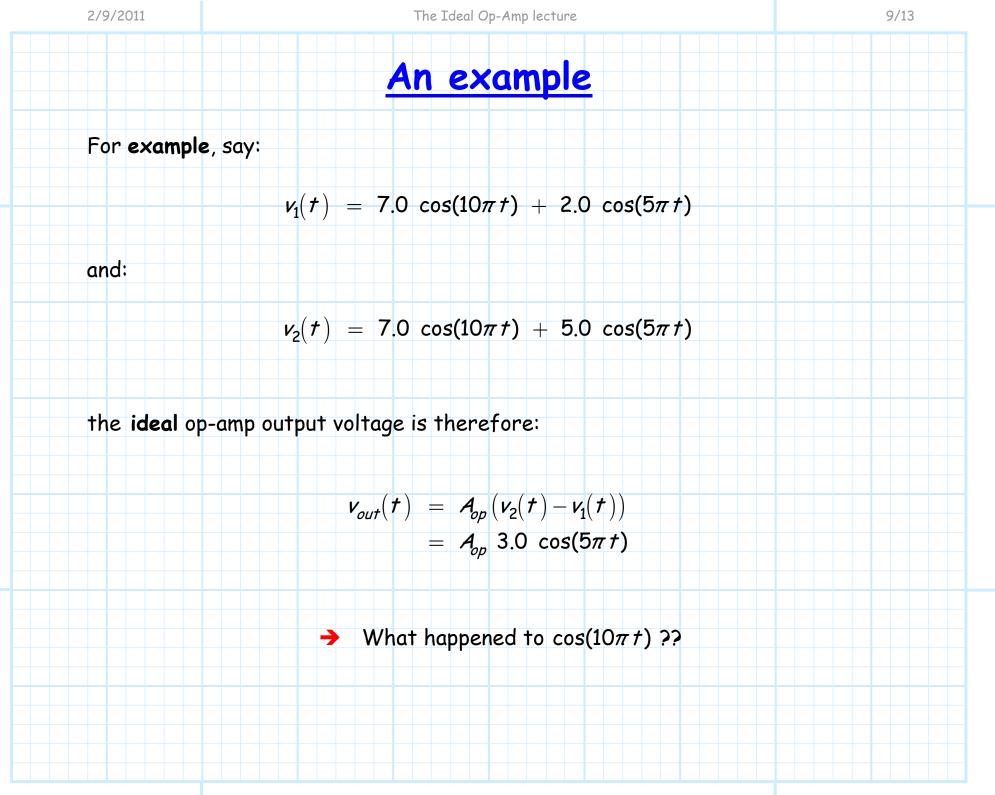
$$\mathbf{v}_{out}(t) = \mathbf{A}_{op}(\mathbf{v}_{2}(t) - \mathbf{v}_{1}(t))$$

Note that the input voltage is simply the **difference** between the **two** input signals v_2 and v_1 .

We call this the differential input signal:

$$\boldsymbol{v}_{d}(\boldsymbol{t}) \doteq \boldsymbol{v}_{2}(\boldsymbol{t}) - \boldsymbol{v}_{1}(\boldsymbol{t})$$



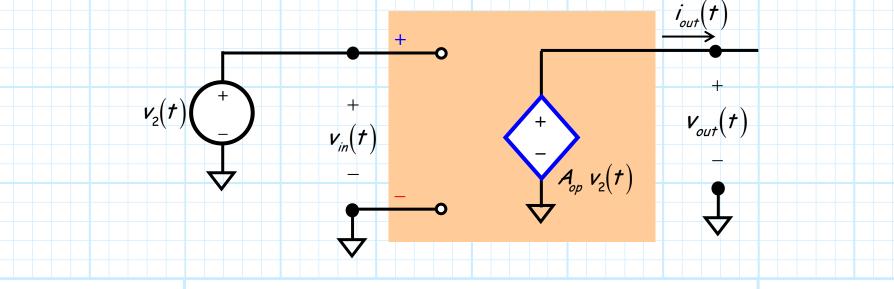


The common mode disappears!

Note:

- **1**. The difference between $v_2(t)$ and $v_1(t)$ is amplified.
- **2.** The common signal (7 cos $10\pi t$) is eliminated by the subtraction.
- Difference amplifiers **ideally** have perfect **common-mode rejection**. That is, the common signal between the two inputs has **no effect** on the output signal.
- Of course, we can always **connect** a terminal to ground potential (i.e., $v_1(t) = 0$),

thus making the input voltage a value with respect to ground:



The ideal op-amp; is it bogus?

Q: I scoff at your so-called "ideal" op-amp.

Although $R_{in} = \infty$ and $R_{out} = 0$ are obviously correct, I deem your assertion that A_{op} should be unfathomably large (approaching ∞) to be a silly notion.

After all, a gigantic gain A_{op} would mean that the **output voltage** $V_{out} = A_{op}(V_2 - V_1)$ would likewise be unfathomably large—the **destructive** implications are **obvious**.

A: It is true that the output voltage will be very large—unless the differential voltage is unfathomably small!

 $i_{2}(t)$

ideal

 V_1

V2

<u>Definitely not bogus!</u>

For example, what if the differential voltage is approximately (i.e., almost)

zero:

 $v_{d}(t) \cong 0 \implies v_{2}(t) \cong v_{1}(t)$

In this case, the output voltage may **not** be very large at all!

Q: Yes, but what is the **likelihood** that the two voltages $v_2(t)$ and $v_1(t)$ are nearly the same? This seems **improbable**.

A: Op-amps are generally **not** implemented by themselves!

$$v_{in}(t)$$

D

 $i_1(t)$

Instead, they typically are but one component of **many** in a **feedback amplifier**.

 $O_{V_{out}}(f)$

Get used to the virtual short!

In these applications, we will **indeed** find that $v_2 \cong v_1$ —but we will also find that this is a **desirable** condition!

The condition $v_2 \cong v_1$ is know as a virtual short.

If this is not true, the output voltage of an ideal op-amp will be unfathomably large.

