2.1 The Inverting Configuration

Reading Assignment: pp. 68-76
One use of op-amps is to make amplifiers!
This seems rather obvious, but remember-an op-amp by itself has too much gain to be practical!

Thus, the op-amp is but one element in our amplifier design.
The resulting amplifier will be very different from the op-amp itself-do not confuse the op-amp with the amplifier!

In this section, we will consider the inverting amplifier-an amplifier constructed with 2 resistors and one op-amp.

HO: ANALYSIS OF THE INVERTING AMPLIFIER

The inverting amplifier uses feedback-we close a loop! HO: CLOSED-LOOP AND OPEN-LOOP GAIN

The result of this feedback is the virtual short.

HO: THE VIRTUAL SHORT

Let's determine the input and output resistances of the inverting amp!

HO: Rin And Rout of the inverting amp

Make sure that your feedback is negative! HO: FEEDBACK STABILITY

Another important application of the inverting configuration is the weighted summer.

HO: THE WEIGHTED SUMMER

Analysis of the Inverting Amplifier

Consider an inverting amplifier:

Note that we use here the new notation $v_{+}=v_{2}$ and $v_{-}=v_{1}$.

Pay attention to your TA!

Now what is the open-circuit voltage gain of this inverting amplifier?
Let's start the analysis by writing down all that we know. First, the op-amp equation:

$$
v_{o u t}^{o c}=A_{o p}\left(v_{+}-v_{-}\right)
$$

Since the non-inverting terminal is grounded (i.e., $v_{+}=0$):

First some KCL...

Now let's apply our circuit knowledge to the remainder of the amplifier circuit. For example, we can use KCL to determine that:

$$
i_{1}=i_{1}+i_{2}
$$

However, we know that the input current i. of an ideal op-amp is zero, as the input resistance is infinitely large.

Thus, we reach the conclusion that: $\quad i_{1}=i_{2}$

And then some Ohm's law...

Likewise, we know from Ohm's Law:
and also that:

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

bining:

Followed by KVL...

Finally, from KCL we can conclude:

$$
v_{\text {in }}-v_{1}=v_{-} \quad \Rightarrow \quad v_{1}=v_{\text {in }}-v_{-}
$$

In other "words", we start at a potential of $v_{\text {in }}$ volts (with respect to ground), we drop a potential of v_{1} volts, and now we are at a potential of v volts (with respect to ground).

And yet another KVL...

Likewise, we start at a potential of of v volts (with respect to ground), we drop a potential of v_{2} volts, and now we are at a potential of $v_{\text {out }}^{o c}$ volts (with respect to ground).

$$
v_{-}-v_{2}=v_{\text {out }}^{o c} \quad \Rightarrow \quad v_{2}=v_{-}-v_{\text {out }}^{o c}
$$

The feed-back equation

Combining these last three equations, we find:

$$
\frac{v_{\text {in }}-v_{-}}{R_{1}}=\frac{v_{-}-v_{\text {out }}^{o o}}{R_{2}}
$$

Now rearranging, we get what is known as the feed-back equation:

$$
v=\frac{R_{2} v_{\text {in }}+R_{1} v_{\text {out }}^{o c}}{R_{1}+R_{2}}
$$

Note the feed-back equation relates v in terms of output $v_{\text {out }}^{o c}$.

The feed-forward equation

We can combine this feed-back equation with the op-amp equation:

$$
v_{o u t}^{o c}=-v_{-} A_{o p}
$$

This op-amp equation is likewise referred to as the feed-forward equation.
Note this equation relates the output $v_{\text {out }}^{o c}$ in terms of v_{-}.

We can combine the feed-back and feed-forward equations to determine an expression involving only input voltage $v_{\text {in }}$ and output voltage $v_{\text {out }}^{o c}$:

$$
\frac{R_{2} v_{i n}+R_{1} v_{o u t}^{o c}}{R_{1}+R_{2}}=-\frac{v_{o c t}^{o c}}{A_{o p}^{o}}
$$

...and the open-circuit voltage gain appears!

Rearranging this expression, we can determine the output voltage $v_{\text {out }}^{o c}$ in terms of input voltage $v_{\text {in }}$:

$$
v_{o u t}^{o c}=\left(\frac{-A_{o p} R_{2}}{\left(R_{1}+R_{2}\right)+A_{o p} R_{1}}\right) v_{i n}
$$

and thus the open-circuit voltage gain of the inverting amplifier is:

$$
A_{o}=\frac{v_{o u t}^{o c}}{v_{i n}}=\left(\frac{-A_{o p} R_{2}}{\left(R_{1}+R_{2}\right)+A_{o p} R_{1}}\right)
$$

Recall that the voltage gain A of an ideal op-amp is very large-approaching infinity.

Thus the open-circuit voltage gain of the inverting amplifier is:

$$
\begin{aligned}
A_{o} & =\lim _{A_{p} \rightarrow \infty}\left(\frac{-A_{o p} R_{2}}{\left(R_{1}+R_{2}\right)+A_{o p} R_{1}}\right) \\
& =\frac{-R_{2}}{R_{1}}
\end{aligned}
$$

Summarizing

Summarizing, we find that for the inverting amplifier:

The non-inverting terminal is at ground potential

One last thing. Let's use this final result to determine the value of v, the voltage at the inverting terminal of the op-amp.

Recall:

$$
v_{-}=\frac{R_{2} v_{\text {in }}+R_{1} v_{\text {out }}^{c o}}{R_{1}+R_{2}}
$$

Inserting the equation:
we find:

$$
\begin{aligned}
& v_{\text {out }}^{o c}=\left(\frac{-R_{2}}{R_{1}}\right) v_{\text {in }} \\
& v_{-}=\frac{R_{2} v_{i}+R_{1}\left(-R_{2} / R_{1}\right) v_{i n}}{R_{1}+R_{2}} \\
& =\frac{R_{2} v_{i n}-R_{2} v_{i n}}{R_{1}+R_{2}} \\
& =0
\end{aligned}
$$

The voltage at the inverting terminal of the op-amp is zero!

The logic behind the virtual short

Thus, since the non-inverting terminal is grounded $\left(v_{2}=0\right)$, we find that:

$$
\boldsymbol{v}_{-}=\boldsymbol{v}_{+} \quad \text { and } \therefore \quad \boldsymbol{v}_{+}-\boldsymbol{v}_{-}=0
$$

Recall that this should not surprise us.
We know that if op-amp gain $A_{o p}$ is infinitely large, its output $v_{o u t}^{o c}$ will also be infinitely large (can you say saturation?), unless $v_{+}-v_{-}$is infinitely small.

We find that the actual value of $v_{+}-v_{-}$to be:

$$
v_{+}-v_{-}=\frac{v_{o u t}^{o c}}{A_{o p}}=\frac{-R_{2}}{A_{o p} R_{1}} v_{i n}
$$

a number which approaches zero as $A_{o p} \rightarrow \infty$!

Closed-Loop and Open-Loop Gain

Consider the inverting amplifiera feedback amplifier constructed with an op-amp:

The open-circuit voltage gain of this amplifier:

$$
A_{0}=\frac{-R_{2}}{R_{1}}
$$

is also referred to by engineers the closed loop gain of the feedback amplifier.

A closed loop

Q: Closed loop? What does that mean?
A: The term "closed loop" refers to loop formed by the feed-forward path and the feed-back (i.e., feedback) path of the amplifier.

In this case, the feed-forward path is formed by the op-amp, while the feedback path is formed by the feedback resistor R_{2}.

An open loop

If the loop is broken, then we say the loop is "open". The gain $\left(v_{o} / v_{i}\right)$ for the open loop case is referred to as the open-loop gain.

Open and closed loop gains

For example, in the circuit we know that:

$$
\begin{aligned}
& v_{+}=0 \\
& v_{\text {out }}^{o c}=A_{o p}\left(v_{+}-v_{-}\right) \\
& i_{1}=i_{2}=0 \\
& v_{-}=v_{\text {in }}-i_{1} R_{1}=0
\end{aligned}
$$

Combining, we find the open-loop gain of this amplifier to be:

$$
A_{\text {open }}=\frac{v_{\text {out }}^{c o}}{v_{\text {in }}}=-A_{o p}
$$

Once we "close" the loop, we have an amplifier with a closed-loop gain:

$$
A_{\text {closed }}=\frac{V_{\text {out }}^{o c}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}}
$$

which of course is the open-circuit voltage gain of this inverting amplifier.

Feedback is a wonderful thing

Note that the closed-loop gain $\left(-R_{2} / R_{1}\right)$ does not explicitly involve the op-amp gain $A_{\text {op }}$.

* The closed-loop gain is determined by two resistor values, which typically are selected to provide significant gain $\left(\left|A_{0}\right|>1\right)$, albeit not so large that the amplifier is easily saturated.
* Conversely, the open-loop gain ($-A_{o p}$) obviously does involve the op-amp gain. Moreover, as in this case, the open-loop gain of a feedback amplifier often only involves the op-amp gain!
* As a result, the op-amp gain is often alternatively referred to as the open-loop gain.

Note that closing the feedback loop turns a generally useless amplifier (the gain is too high!) into a very useful one (the gain is just right)!

The Virtual Short

For feedback amplifiers constructed with op-amps, we have found (and will continue to find) that the two op-amp terminals will always be approximately equal ($v_{-} \approx v_{+}$).

Of course, this must be true in order to avoid saturation, as the gain of an opamp is ideally infinitely large.

Since $v_{-} \approx v_{+}$for feedback applications, it appears that the two op-amp terminals are shorted together!

There is no short inside the op-amp!

The condition in op-amp feedback amplifiers where $v_{1}=v_{2}$ is known as the "virtual short".

Remember, although the two input terminal appear to be shorted together, they are most certainly not!

If a true short were present, then current could flow from one terminal to the other (i.e., $i_{-}=-i_{+}$). However, we know that the input resistance of an op-amp is ideally infinite, and thus we know that the input current into an op-amp is zero.

Therefore, it is not the op-amp that enforces the condition $v_{1}=v_{2}$, it is the feedback that makes this so!

The virtual short: your new BFF

Applying the concept of a virtual short can greatly simplify the analysis of an op-amp feedback amplifier.

For example, consider again the inverting amplifier:

The virtual ground

This time, we begin the analysis by applying the virtual short condition:

$$
v_{-} \cong v_{+}
$$

Since the non-inverting terminal is grounded ($v_{+}=0$), the virtual short means that the non-inverting terminal is likewise at zero potential $(v=0)$!

We refer to this condition as a virtual ground.

Isn't this simpler?

Analyzing the remainder of the circuit, we find:

$$
\begin{aligned}
& i_{1}=0 \\
& i_{1}=i_{2}+i_{-}=i_{2} \\
& i_{1}=\frac{v_{\text {in }}-v}{R_{1}}=\frac{v_{i n}}{R_{1}} \\
& i_{2}=\frac{v-v_{\text {out }}^{o c}}{R_{2}}=\frac{-v_{\text {out }}^{o c}}{R_{2}}
\end{aligned}
$$

Combining, we find:

$$
\frac{V_{\text {in }}}{R_{1}}=\frac{-V_{\text {out }}^{o c}}{R_{2}}
$$

Rearranging, we again find the open-circuit, closed-loop voltage gain:

$$
A_{o}=\frac{V_{o u t}^{o c}}{V_{\text {in }}}=\frac{-R_{2}}{R_{1}}
$$

Your TA is even smarter than this guy!

Note this is exactly the result we found
 before, yet in this case we never considered the op-amp equation:

$$
v_{o u t}^{o c}=A_{o p}\left(v_{+}-v_{-}\right)
$$

The virtual short equation ($v_{+}=v_{-}$) replaced the op-amp equation in our analysis of this feedback amplifier.

Eeffectively, the two equations say the same thing (provided $A_{\text {op }}$ is infinitely large, and we have negative feedback in the circuit).

$R_{\text {in }}$ and $R_{\text {out }}$ of the Inverting Amplifier

Recall that the input resistance of an amplifier is:

$$
R_{i n}=\frac{v_{i n}}{i_{i n}}
$$

For the inverting amplifier, it is evident that the input current $i_{\text {in }}$ is equal to i_{1} :

Its input resistance

From Ohm's Law, we know that this current is:

$$
i_{i n}=i_{1}=\frac{v_{i n}-v_{1}}{R_{1}}
$$

The non-inverting terminal is "connected" to virtual ground:

$$
v_{-}=0
$$

and thus the input current is:

$$
i_{i n}=i_{1}=\frac{v_{i n}}{R_{1}}
$$

We now can determine the input resistance:

$$
R_{\text {in }}=\frac{v_{\text {in }}}{i_{\text {in }}}=v_{i n}\left(\frac{R_{1}}{v_{i n}}\right)=R_{1}
$$

The input resistance of this inverting amplifier is therefore $R_{i n}=R_{1}$!

Output resistance is harder

Now, let's attempt to determine the output resistance $R_{\text {out }}$.
Recall that we need to determine two values: the short-circuit output current ($i_{\text {out }}^{s c}$) and the open-circuit output voltage ($v_{\text {out }}^{o c}$).

To accomplish this, we must replace the op-amp in the circuit with its linear circuit model:

First, the short circuit output current

From KCL, we find that:
where:

$$
i_{\text {out }}^{s c}=i_{2}+i_{\text {out }}^{\text {op }}
$$

and:

$$
i_{o u t}^{o p}=\frac{-A_{o p} V_{-}-V_{o u t}^{o c}}{R_{o}^{o p}}=\frac{-A_{o p} v_{-}}{R_{o}^{o p}}
$$

$$
i_{2}=\frac{v_{-}-v_{\text {out }}^{o c}}{R_{2}}=\frac{v_{-}}{R_{2}}
$$

Therefore, the short-circuit output current is:

$$
i_{o u t}^{s c}=\frac{V_{-}}{R_{2}}-\frac{A_{o p} V_{-}}{R_{o u t}^{o p}}=\left(\frac{R_{o u t}^{o p}-R_{2} A_{o p}}{R_{2} R_{o u t}^{o p}}\right) V_{-} \cong-\frac{A_{o p}}{R_{o u t}^{o p}} V_{-}
$$

Now, the open circuit output voltage

The open-circuit output voltage can likewise be determined in terms of $A_{\text {op }}$ and v.

Here, it is evident that since $i_{\text {out }}=0$:

$$
i_{2}=-i_{o u t}^{o p}
$$

where we find from Ohm's Law:

$$
i_{2}=\frac{v_{-}-\left(-A_{o p} v_{-}\right)}{R_{2}+R_{o u t}^{o p}}=\left(\frac{1+A_{o p}}{R_{2}+R_{\text {out }}^{o p}}\right) v .
$$

The open-circuit output voltage
Now from KVL:

$$
v_{o u t}^{o c}=v_{-}-R_{2} i_{2}
$$

Inserting the expression for i_{2} :

$v_{\text {out }}^{o c}=v_{-}-R_{2}\left(\frac{1+A_{\text {op }}}{R_{2}+R_{\text {out }}^{o p}}\right) v$ $=\left(\frac{R_{2}+R_{\text {out }}^{o p}}{R_{2}+R_{\text {out }}^{o p}}-\frac{R_{2}\left(1+A_{o p}\right)}{R_{2}+R_{\text {out }}^{o p}}\right) v$
$=\left(\frac{R_{o}^{o p}-R_{2} A_{o p}}{R_{2}+R_{o u t}^{o p}}\right) v_{-}$
$\cong-\frac{R_{2} A_{o p}}{R_{2}+R_{o u t}^{o p}} v_{-}$

Now we find the output resistance

Now, we can find the output resistance of this amplifier:

$$
\begin{aligned}
R_{\text {out }} & =\frac{V_{\text {ot }}^{o c}}{i_{\text {out }}^{s c}} \\
& =\left(\frac{-R_{2} A_{o p}}{R_{2}+R_{o}^{o p}}\right)\left(\frac{-A_{o p}}{R_{o}^{o p}}\right)^{-1} \\
& =\frac{R_{2} R_{o}^{o p}}{R_{2}+R_{o}^{o p}} \\
& =R_{2} \| R_{o}^{o p}
\end{aligned}
$$

In other words, the inverting amplifier output resistance is simply equal to the value of the feedback resistor R_{2} in parallel with op-amp output resistance $R_{o u t}^{o p}$.

This is zero if the op-amp is ideal

Ideally, of course, the op-amp output resistance is zero, so that the output resistance of the inverting amplifier is likewise zero:

$$
\begin{aligned}
R_{\text {out }} & =R_{2} \| R_{\text {out }}^{o p} \\
& =R_{2} \| 0 \\
& =0
\end{aligned}
$$

Note for this case-where the output resistance is zero-the output voltage will be the same, regardless of what load is attached at the output (e.g., regardless of $i_{\text {out }}$)!

For real op-amps the output resistance is small

Thus, if $R_{\text {out }}=0$, then the output voltage is equal to the open-circuit output voltage-even when the output is not open circuited:

$$
v_{\text {out }}=-\frac{R_{2}}{R_{1}} v_{\text {in }} \quad \text { for all } i_{\text {out }}!!
$$

Recall that it is this property that made $R_{\text {out }}=0$ an "ideal" amplifier characteristic.

We will find that real (i.e., non-ideal!) op-amps typically have an output resistance that is very small ($R_{\text {out }}^{o p}<R_{2}$), so that the inverting amplifier output resistance is approximately equal to the op-amp output resistance:

$$
\begin{aligned}
R_{\text {out }} & =R_{2} \| R_{\text {out }}^{o p} \\
& \approx R_{\text {out }}^{o p}
\end{aligned}
$$

A summary

Summarizing, we have found that for the inverting amplifier:

$$
\begin{aligned}
& R_{\text {in }}=R_{1} \\
& R_{\text {out }} \approx R_{\text {out }}^{o p} \quad \text { (ideally zero) }
\end{aligned}
$$

Thus, this inverting amplifier...

The inverting amp equivalent circuit

... has the equivalent circuit:

Note the input resistance and open-circuit voltage gain of the inverting amplifier is VERY different from that of the op-amp itself!

Feedback Stability

Recall that for the inverting amp:

we have the feed-forward equation:

$$
v_{\text {out }}^{o c}=-A_{o p} v_{-}
$$

and the feed-back equation:

$$
v_{-}=\frac{R_{2} v_{\text {in }}+R_{1} v_{\text {out }}^{o c}}{R_{1}+R_{2}}
$$

Nothing more fun than calculus!

Taking derivatives of these equations, we find that:

$$
\frac{\partial V_{o u t}^{o c}}{\partial V_{-}}=\frac{\partial\left(-A_{o p} V_{-}\right)}{\partial V_{-}}=-A_{o p}
$$

and:

$$
\frac{\partial v_{-}}{\partial v_{\text {out }}^{o c}}=\frac{\partial}{\partial v_{\text {out }}^{o c}}\left(\frac{R_{2} v_{\text {in }}+R_{1} v_{\text {out }}^{o c}}{R_{1}+R_{2}}\right)=\frac{R_{1}}{R_{1}+R_{2}}
$$

These derivatives are very important in determining the stability of the feedback amplifier.

Feed-forward

To see this, consider what happens when, for some reason, v. changes some small value Δv from its nominal value of $v_{-}=0$.

The output voltage will then likewise change by a value $\Delta v_{\text {out }}^{c o}$:

$$
\Delta \nu_{\text {out }}^{o c} \approx\left(\frac{\partial V_{\text {out }}^{o c}}{\partial V_{-}}\right) \Delta V_{-}=-\mathcal{A}_{o p} \Delta V_{1}
$$

Note if $\Delta v_{\text {_ }}$ is positive, then $\Delta v_{\text {out }}^{o c}$ will be negative-an increase in v. leads to a decrease in $v_{\text {out }}^{o c}$.

This describes the feed-forward portion of the "loop."

Feed-back

The feed-back equation states that a small change in the output voltage (i.e., $\Delta \nu_{\text {out }}^{o c}$), will likewise result in a small change in v.:

$$
\Delta V_{-} \approx\left(\frac{\partial V_{-}}{\partial V_{\text {out }}^{o c}}\right) \Delta \nu_{o u t}^{o c}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \Delta \nu_{\text {out }}^{o c}
$$

Note in this case, a decreasing output voltage will result in a decreasing inverting terminal voltage v..

Thus, if the inverting terminal voltage tries to increase from its correct value of $v_{1}=0$, the control loop will react by decreasing the voltage v_{1}-essentially counteracting the initial change!

Negative feedback-in this case it's a good thing!

Note that the loop product:

$$
\frac{\partial v_{o t t}^{o c}}{\partial v_{-}} \frac{\partial v_{-}}{\partial v_{o u t}^{o c}}=-A_{o p}\left(\frac{R_{1}}{R_{1}+R_{2}}\right)
$$

is a negative value; we refer to this case as negative feedback.
Negative feedback keeps the inverting voltage in place (i.e., $v=0$)-it "enforces" the concept of the virtual ground!

Let's try some positive feedback

Contrast this behavior with that of the following circuit:

Q: Isn't this precisely the same circuit as before?
A: NO!

Note that the feedback resistor is now connected to the non-inverting terminal, and the inverting terminal is now grounded.

Positive derivatives!

The feed-forward equations for this circuit are thus:

$$
v_{o u t}^{o c}=A_{o p} v_{+}
$$

And so:
while the feed-back equations are:

$$
v_{+}=\frac{R_{2} v_{\text {in }}+R_{1} v_{\text {out }}^{o c}}{R_{1}+R_{2}}
$$

and:

$$
\frac{\partial V_{o u t}^{o c}}{\partial v_{+}}=\frac{\partial\left(A_{o p} v_{+}\right)}{\partial v_{+}}=A_{o p}
$$

$$
\frac{\partial v_{+}}{\partial v_{\text {out }}^{o c}}=\frac{\partial}{\partial v_{\text {out }}^{o c}}\left(\frac{R_{2} v_{\text {in }}+R_{1} v_{\text {out }}^{o c}}{R_{1}+R_{2}}\right)=\frac{R_{1}}{R_{1}+R_{2}}
$$

Note in this case, both derivatives are positive.

Positive feedback-in this

case it's a bad thing!

This means that an increase in v_{+}will lead to an increase in $v_{\text {out }}^{o c}$. The problem is that the feedback will react by increasing v_{+}even morethe error is not corrected, it is instead reinforced!

The result is that the output voltage will be sent to $v_{\text {out }}^{o c}=\infty$ or $v_{\text {out }}^{o c}=-\infty$ (i.e., the amplifier will saturate).

Note that the loop product for this case is positive:

$$
\frac{\partial v_{o u t}^{o c}}{\partial v_{+}^{o c}} \frac{\partial v_{+}}{\partial v_{o u t}^{o c}}=A_{o p}\left(\frac{R_{1}}{R_{1}+R_{2}}\right)
$$

Thus, we refer to this case as positive feedback.
Positive feedback typically leads to amplifier instability!
As a result, we find that the feed-back portion of an op-amp circuit almost always is connected to its inverting (-) terminal!

The Weighted Summer

Consider an inverting amplifier with multiple inputs!

From KCL, we can conclude that the currents are related as:

$$
i=i_{1}+i_{2}+i_{3}
$$

and because of virtual ground $\left(i_{-}=i_{+}=0\right)$, we can conclude from Ohm's Law:

$$
i_{1}=\frac{v_{1}-v_{-}}{R_{1}}=\frac{v_{1}}{R_{1}} \quad i_{2}=\frac{v_{2}-v_{-}}{R_{2}}=\frac{v_{2}}{R_{2}} \quad i_{3}=\frac{v_{3}-v_{-}}{R_{3}}=\frac{v_{3}}{R_{3}}
$$

The output voltage

Likewise:

$$
i=\frac{v_{-}-V_{\text {out }}}{R_{f}}=\frac{-V_{\text {out }}}{R_{f}}
$$

Inserting these results into the initial KCL expression:

$$
\frac{-V_{\text {out }}}{R_{f}}=\frac{v_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}
$$

Now, we sprinkle on some algebraic pixie dust, and find the output voltage:

$$
v_{\text {out }}=-\frac{R_{f}}{R_{1}} v_{1}-\frac{R_{f}}{R_{2}} v_{2}-\frac{R_{f}}{R_{3}} v_{3}
$$

The output is thus a weighted summation of each of the input signals!
We therefore refer to this circuit as the weighted summer.

How to combine signals

Note that if $R_{f}=R_{1}=R_{2}=R_{3}$, the output is an unweighted summer:

$$
v_{\text {out }}(t)=-\left(v_{1}(t)+v_{2}(t)+v_{3}(t)\right)
$$

For example, if:

$$
\begin{aligned}
& v_{1}(t)=2.0 \cos (2 \pi t+\pi) \\
& v_{2}(t)=1.0 \cos (2 \pi t+\pi / 3) \\
& v_{3}(t)=1.5 \cos (2 \pi t-\pi / 4)
\end{aligned}
$$

then:

$$
v_{\text {out }}(t)=-2.0 \cos (2 \pi t+\pi)-1.0 \cos (2 \pi t+\pi / 3)-1.5 \cos (2 \pi t-\pi / 4)
$$

The summer is a method for combining several signals!

