2.3 The Non-Inverting Configuration

Reading Assignment: pp.

Another standard op-amp circuit configuration is the non-inverting configuration.

HO: THE NON-INVERTING CONFIGURATION

An important non-inverting circuit is the voltage vollower.

HO: THE VOLTAGE FOLLOWER

2/4

i - = 0 is the key

These results are of course very similar to the expressions we derived when analyzing the inverting configuration.

 $i_1 = \frac{-V_{in}}{R_1} \qquad i_2 = \frac{V_{in} - V_{out}}{R_1}$

The main difference is of course that v_{\perp} is **not** equal to zero.

Instead, we know that $v_{-} = v_{in}$. Thus:

Note the gain is a positive number

Performing some simple algebra, we rearrange this expression and find the **open-circuit voltage gain** of the **non**-inverting configuration:

$$\mathcal{A}_{vo} = \frac{\mathbf{v}_{out}^{oc}}{\mathbf{v}_{in}} = \mathbf{1} + \frac{\mathbf{R}_2}{\mathbf{R}_1}$$

Note that the open-circuit voltage gain for this configuration is a **positive** number.

We conclude then that the input and output voltage will have the same sign (i.e., \pm).

This is why we call the configuration noninverting.

Jim Stiles

The Voltage Follower

The voltage follower has a open-circuit voltage gain $A_{o} = 1$ —with the result that

What a great amp...

Say you have toiled for hours to design and build the following audio amplifier:

Jim Stiles

What's the problem then?

We can use the linear equivalent **circuit model** of the audio amplifier to **analyze** the result:

The output of this amplifier is even smaller than its input!

Vin

The **problem**, of course, is **not** that the open-circuit voltage **gain** is too small after all, it's -200!

Jim Stiles

The output resistance is just too large!

The **problem** is that the amplifier **output resistance** ($R_{out} = 377\Omega$) is much **larger** than the **load** resistance $R_L = 4 \Omega$.

Therefore, we have tremendous loss due to the resulting voltage divider:

6/7

 v_{out} >4 Ω

Let's again use the linear equivalent model to analyze this circuit and find the

output voltage v_{out}.

$$v_{out} = -200 v_{in} \left(\frac{\infty}{1000 + \infty}\right) \left(\frac{4}{0 + 4}\right) = -200 v_{in}$$

The voltage follower: a useful buffer

Note:

- **1.** Instead of 4Ω , the audio amp "sees" a load of ∞ , the input resistance of the voltage follower—this is ideal!
- Instead of 377Ω, the speaker "sees" a source resistance of 0, the output resistance of the voltage follower—this too is ideal!
- Remember, there are **three** characterizing parameters of an amplifier—open circuit voltage gain is just **one** of those three!
- The input and output impedance of the voltage follower make it an excellent "buffer" between two circuits!