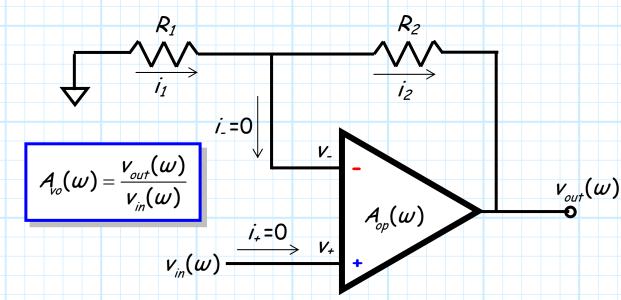
Closed-Loop Bandwidth

Say we build in the lab (i.e., the op-amp is not ideal) this amplifier:



We know that the open-circuit voltage gain (i.e., the closed-loop gain) of this amplifier **should** be:

$$A_{vo}(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = 1 + \frac{R_2}{R_1}$$
 ???

This gain will certainly be accurate for input signals $v_{in}(\omega)$ at low frequencies

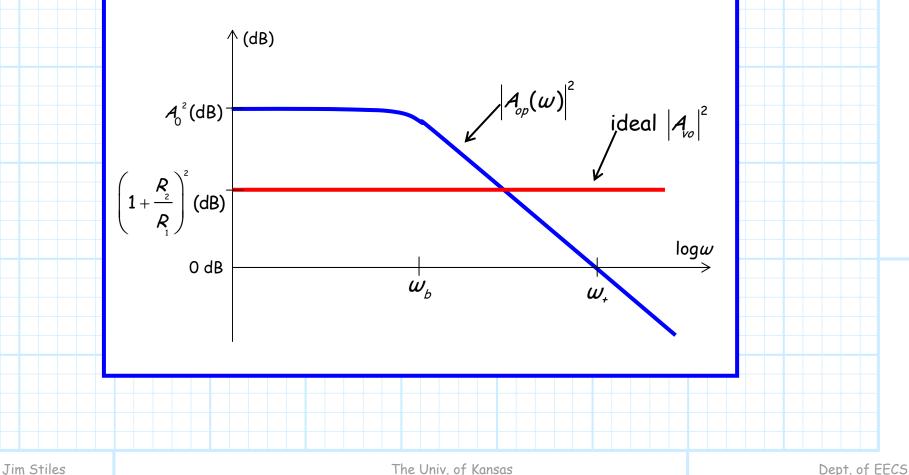
ω.

As the signal frequency increases

But remember, the Op-amp (i.e., open-loop gain) gain $A_{\omega}(\omega)$ decreases with

frequency.

If the signal frequency ω becomes too large, the open-loop gain $A_{\omega}(\omega)$ will become less than the ideal closed-loop gain!



3/9

The amp gain cannot

exceed the op-amp gain

Note as some sufficiently high frequency (w' say), the open-loop (op-amp) gain will become **equal** to the ideal closed-loop (non-inverting amplifier) gain:

$$\left|\mathcal{A}_{op}(\boldsymbol{\omega}=\boldsymbol{\omega}')\right|=1+rac{R_2}{R_1}$$

Moreover, if the input signal frequency is greater than frequency w', the opamp (**open-loop**) gain will in fact be smaller that the **ideal** non-inverting (**closedloop**) amplifier gain:

$$|A_{op}(\omega > \omega')| < 1 + \frac{R_2}{R_1}$$

Q: If the signal frequency is greater than ω' , will the non-inverting amplifier still exhibit an open-circuit voltage (closed-loop) gain of $A_{vo}(\omega) = 1 + R_2/R_1$?

A: Allow my response to be both direct and succinct—NEVER!

<u>Closed-loop gain < or = open-loop gain</u>

The gain $A_{\omega}(\omega)$ of **any** amplifier constructed with an op-amp can **never** exceed the gain $A_{\omega}(\omega)$ of the op-amp itself.

In other words, the closed-loop gain of any amplifier can **never** exceed its openloop gain.

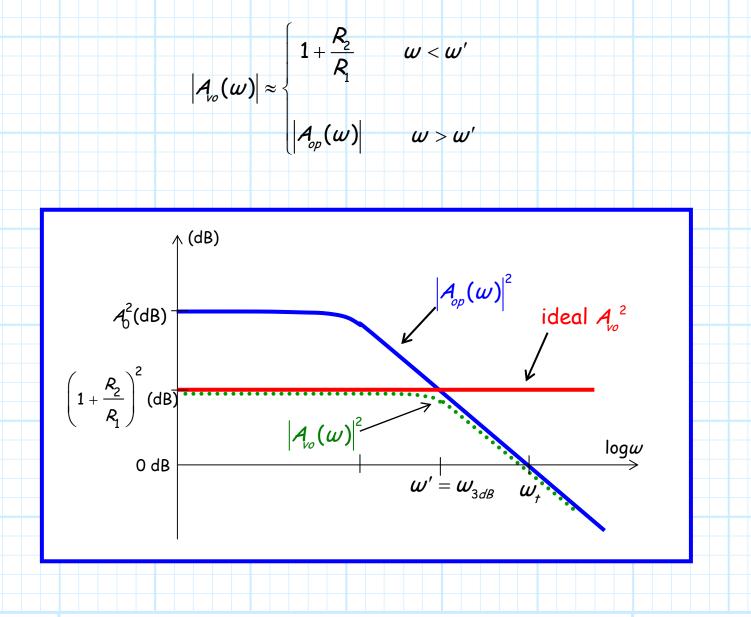
* We find that if the input signal frequency exceeds ω' , then the amplifier (closed-loop) gain $A_{\nu_0}(\omega)$ will equal the op-amp (open-loop) gain $A_{\nu_0}(\omega)$.

* Of course, if the signal frequency is less than ω' , the closed-loop gain will be equal to its ideal value $A_{\nu_0}(\omega) = 1 + R_2/R_1$, since the op-amp (open-loop) gain is much larger than this ideal value ($|A_{\nu_p}(\omega < \omega')| \gg 1 + R_2/R_1$).

* We now refer to the value $1 + R_2/R_1$ as the **mid-band gain** of the amplifier.

1+R₂/R₁ is the midband gain

Therefore, we find for **this** non-inverting amplifier that:



Can we determine this bandwidth?

Now for one very important fact: the transition frequency ω' is the break frequency of the amplifier closed-loop gain $|A_{\omega}(\omega)|$.

Thus, we come to conclusion that ω' is the **3dB bandwidth** of this non-inverting amplifier (i.e., $\omega' = \omega_{3dB}$)!

- Q: Is there some way to numerically determine this value ?
- A: Of course!

Recall we defined frequency ω' as the value where the open-loop (op-amp) gain and the **ideal** closed-loop (non-inverting amplifier) gains were equal:

$$\left|\mathcal{A}_{op}(\boldsymbol{\omega}=\boldsymbol{\omega}')\right|=1+rac{R_{2}}{R}$$

Recall also that for $w > w_b$, we can approximate the op-amp (open-loop) gain as:

$$\left|\mathcal{A}_{op}(\omega)\right| \approx \frac{\mathcal{A}_{o}\omega_{b}}{\omega}$$

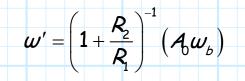
7/9

Divide the gain-bandwidth product by gain, and you have determined the bandwidth!

Combining these results, we find:

$$A_{op}(\omega = \omega') = 1 + \frac{R_2}{R_1} \simeq \frac{A_0 \omega_b}{\omega'}$$

and thus:



But remember, we found that this frequency is equal to the **breakpoint** of the non-inverting amplifier (closed-loop) gain $A_{\omega}(\omega)$.

Therefore, the 3dB, closed-loop bandwidth of this amplifier is:

$$\boldsymbol{\omega}_{3dB} \simeq \left(1 + \frac{\boldsymbol{R}_2}{\boldsymbol{R}_1}\right)^{-1} \left(\boldsymbol{A}_0 \boldsymbol{\omega}_b\right)$$

3/1/2011

This is not rocket science

Recall also that $A_0 w_b = w_t$, so that:

$$\boldsymbol{\omega}_{3dB} \simeq \left(1 + \frac{\boldsymbol{R}_2}{\boldsymbol{R}_1}\right)^{-1} \boldsymbol{\omega}_t$$

If we rewrite this equation, we find something interesting:

$$\boldsymbol{\omega}_{3dB}\left(1+\frac{\boldsymbol{R}_2}{\boldsymbol{R}_1}\right)\simeq\boldsymbol{\omega}_{t}$$

Look what this says: the **PRODUCT** of the amplifier (mid-band) **GAIN** and the amplifier **BANDWIDTH** is equal to the **GAIN-BANDWIDTH PRODUCT**.

This result should not be difficult to remember !

The gain-bandwidth product

<u>is an op-amp parameter</u>

The above approximation is valid for virtually **all** amplifiers built using operational amplifiers, i.e.:

$$\left|\mathcal{A}_{vo}(\omega_{m})\right|\omega_{3dB}=\omega_{t}$$

where:

 $|A_{\omega}(\omega_m)| \doteq \text{mid-band gain}$

In other words, w_m is some frequency within the bandwidth of the amplifier (e.g., $0 < w_m < w_{_{3dB}}$). We of course can equivalently say:

$$A_{vo}(f_m) f_{3dB} = f_t$$

The product of the **amplifier** gain and the amplifier **bandwidth** is equal to the **op-amp** gain-bandwidth product!