<u>Example: The Gain</u> <u>-Bandwidth Product</u>

An op-amp has a **D**.C. differential gain of $A_0 = 10^5$.

At a frequency of 1MHz ($f=10^6$), the differential op-amp gain drops to 10 (i.e., $|A_{op}(f=10^6)| = 10$).

Q: What is the break frequency and unity-gain frequency of this op-amp?

A: We know that if $f > f_b$:

$$\left|\mathcal{A}_{op}(f)\right| = \frac{\mathcal{A}_{o}f_{b}}{f}$$

and thus at a frequency of 1MHz, we find for the parameters of this problem:

$$\left|\mathcal{A}_{op}(f=10^{6})\right|=10=rac{10^{5}f_{b}}{10^{6}}$$

Jim Stiles

It's 10 MHz

It is apparent then that the **break frequency** of this op-amp must be:

$$f_b = \frac{(10)(10^6)}{10^5} = 100 \text{ Hz}$$

and since the unity-gain bandwidth f_{τ} is related to the break frequency and

D.C. gain as:

 $f_{t} = A_{0} f_{b}$

we find that:

 $f_{\tau} = A_0 f_b$ = 10⁵ (100) = 10⁷

Thus, the **unity-gain frequency** (i.e., the **gain-bandwidth product**) for this problem is **10 MHz**.

3/3

The gain depends on frequency

Q: What is the differential gain of this op-amp at a frequency of 10 kHz (i.e., $|A_{op}(f=10^4)|$)?

A: We know that:

$$\left|\mathcal{A}_{op}(f)\right| = \frac{\mathcal{A}_{o}f_{b}}{f} = \frac{f_{t}}{f}$$

therefore, using the values of this example:

$$|\mathcal{A}_{op}(f=10^4)| = \frac{f_r}{f}$$

= $\frac{10^7}{10^4}$
= 10^3

Hence, the differential op-amp gain at 10 kHz is 1000.