Output Voltage Saturation

Recall that the **ideal** transfer function implies that the **output voltage** of an amplifier can be **very** large, provided that the gain A_{vo} and the input voltage v_{in} are large.

The output voltage is limited

However, we found that in a "real" amplifier, there are **limits** on how large the output voltage can become.

The transfer function of an amplifier is more **accurately** expressed as:

Vin

 $L_{+}^{in} = \frac{L_{+}}{A}$

<u>A non-linear behavior!</u>

Lin

∧ Vout

L.

L+

Avo

This expression is shown graphically as:

This expression (and graph) shows that electronic amplifiers have a **maximum** and **minimum** output voltage (L_{+} and L_{-}).

If the **input** voltage is either too large or too small (too negative), then the amplifier **output** voltage will be equal to either L_+ or L_- .

If $v_{out} = L_{+}$ or $v_{out} = L_{-}$, we say the amplifier is in **saturation** (or compression).

Jim Stiles

4/9

Make sure the input isn't too large!

Amplifier saturation occurs when the **input** voltage is **greater** than:

$$v_{in} > \frac{L_+}{A_{vo}} \doteq L_+^{in}$$

or when the **input** voltage is **less** than:

$$V_{in} < \frac{L_{-}}{A_{vo}} \doteq L_{-}^{in}$$

Often, we find that these voltage limits are symmetric, i.e.:

$$L_{\underline{}} = -L_{\underline{}}$$
 and $L_{\underline{}}^{in} = -L_{\underline{}}^{in}$

For example, the output limits of an amplifier might be L_{\perp} = 15 V and L_{\perp} = -15 V.

The Univ. of Kansas

Saturation: Who really cares?

Q: Why do we **care** if an amplifier saturates? Does it cause any **problems**, or otherwise result in performance **degradation**??

A: Absolutely! If an amplifier saturates—even momentarily the unavoidable result will be a distorted output signal.

A distortion free example

For example, consider a case where the input to an amplifier is a triangle wave:

 $v_{in}(t)$

 L_{+}^{in}

Ľ'n

The input is too darn big!

Consider now the case where the input signal is much **larger**, such that $v_{in}(t) > L_{+}^{in}$ and $v_{in}(t) < L_{-}^{in}$ for some time t (e.g., the input triangle wave **exceeds** the voltage limits L_{+}^{in} and L_{-}^{in} some of the time):

This is precisely the situation about which I earlier expressed caution.

We now must experience the palpable agony of signal distortion!

Jim Stiles

The Univ. of Kansas

Jim Stiles

<u>Amplifiers with op-amps</u>

For amplifiers constructed with op-amps, the voltage limits L_{+} and L_{-} are determined by the DC Sources V^{+} and V^{-} :

