#### 1/6

# <u>Example: The Input</u>

## <u>Bias Current</u>

**Q**: How do **input bias currents**  $I_{B1}$  and  $I_{B2}$  affect amplifier operation?

A: Consider both inverting and non-inverting configurations.

Inverting Configuration



Jim Stiles

#### 2/6

## KCL is now a bit more tricky!

In this case, we apply KCL and we find:

$$\dot{i_1} = \dot{i_2} + \mathcal{I}_{B1}$$

However, we still find  $v_{-} \simeq v_{+} = 0$  (**neglecting** the input offset voltage) by virtue of the virtual short.

Therefore, from KVL and Ohm's Law:

$$i_{1} = \frac{v_{in} - v_{-}}{R_{1}} = \frac{v_{in}}{R_{1}} \quad \text{and} \quad i_{2} = \frac{v_{-} - v_{out}}{R_{2}} = \frac{-v_{out}}{R_{2}}$$
Combining these results:
$$\frac{v_{in}}{R_{1}} = \frac{-v_{out}}{R_{2}} + I_{B1}$$
The output voltage is thus:
$$i_{1}$$

$$v_{in}$$

$$\frac{v_{in}}{I_{B1}} = \frac{-v_{out}}{I_{B1}} + I_{B1}$$

$$v_{in}$$

$$\frac{v_{in}}{I_{B1}} = \frac{v_{in}}{I_{B2}}$$

#### Should we make R1 really small?

Note again that if  $I_{B1} = 0$ , the result reduces to the expected inverting amplifier equation:

The second term in the above expression  $(I_{\beta_1} R_1)$  therefore represents another **output offset voltage**!

 $V_{out} = -\left(\frac{R_2}{R_1}\right)V_{in}$ 

It appears that we should keep the value of  $R_1$  small to minimize the output offset voltage.



 $I_{B2}$ 

OV<sub>out</sub>





### We have another trick or two up our sleeve

Again, we find that this result is simply the ideal non-inverting expression:



with an added output offset voltage term:

#### $I_{B1} R_2$

In this case, we find that this offset voltage is minimized by making feedback resistor  $R_2$  small.

In general, we find that the effects of the input bias currents can be minimized by using **small** resistor values.

However, we will find that there is an **additional strategy** for minimizing the effects of input bias currents!

