Example: The Input Bias Current

Q: How do input bias currents $I_{B 1}$ and $I_{B 2}$ affect amplifier operation?

A: Consider both inverting and non-inverting configurations.

Inverting Configuration

KCL is now a bit more tricky!

In this case, we apply KCL and we find:

$$
i_{1}=i_{2}+I_{B 1}
$$

However, we still find $v_{-} \simeq v_{+}=0$ (neglecting the input offset voltage) by virtue of the virtual short.

Therefore, from KVL and Ohm's Law:

$$
i_{1}=\frac{v_{\text {in }}-v_{-}}{R_{1}}=\frac{v_{\text {in }}}{R_{1}} \quad \text { and } \quad i_{2}=\frac{v_{-}-v_{\text {out }}}{R_{2}}=\frac{-v_{\text {out }}}{R_{2}}
$$

Combining these results:

$$
\frac{v_{\text {in }}}{R_{1}}=\frac{-V_{\text {out }}}{R_{2}}+I_{B 1}
$$

The output voltage is thus:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}+R_{1} I_{B 1}
$$

Should we make R_{1} really small?

Note again that if $I_{B 1}=0$, the result reduces to the expected inverting amplifier equation:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}
$$

The second term in the above expression $\left(I_{B 1} R_{1}\right)$ therefore represents another output offset voltage!

It appears that we should keep the value of R_{1} small to minimize the output offset voltage.

Q: What would a small value of R_{1} do to the amplifier input resistance?

A:

Please welcome the non-inverting config.

Non-Inverting Configuration

Neglecting the input offset voltage, we can use the virtual short to determine that:

$$
v_{-} \simeq v_{i n}
$$

and KCL provides the same result as that of the inverting amplifier:

$$
i_{1}=i_{2}+I_{B 1}
$$

Again, a DC output offset

From KVL and Ohm's Law:
and likewise:

$$
i_{1}=\frac{0-v_{-}}{R_{1}}=\frac{-v_{\text {in }}}{R_{1}}
$$

$$
i_{2}=\frac{v_{-}-v_{\text {out }}}{R_{2}}=\frac{v_{\text {in }}-V_{\text {out }}}{R_{2}}
$$

Combining, we find:

$$
\frac{-V_{\text {in }}}{R_{1}}=\frac{v_{\text {in }}-V_{\text {out }}}{R_{2}}+I_{B 1}
$$

or rearranging:

$$
v_{\text {out }}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{\text {in }}+I_{B 1} R_{2}
$$

$\xrightarrow[i_{1}]{\text { (}}$

We have another trick or two up our sleeve

Again, we find that this result is simply the ideal non-inverting expression:

$$
v_{\text {out }}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{\text {in }}
$$

with an added output offset voltage term:

$$
I_{B 1} R_{2}
$$

In this case, we find that this offset voltage is minimized by making feedback resistor R_{2} small.

In general, we find that the effects of the input bias currents can be minimized by using small resistor values.

However, we will find that there is an additional strategy for minimizing the effects of input bias currents!

