2.7 DC Imperfections

Reading Assignment: 98-104

In addition to saturation and slew-rate limiting, another non-linear behavior of amplifiers is a DC output offset!

Amplifiers built with op-amps can/will exhibit this non-linear behavior, mainly for two separate reasons!

HO: The Input Offset Voltage

Example:The Input Offset Voltage

The second reason for output offsets is there is a constant bias current flowing into the input terminals.

HO: THE INPUT BIAS CURRENT

EXAMPLE: THE INPUT BIAS CURRENT

Fortunately, we can minimize the DC output offset due the input bias current with one simple design rule.

HO: REDUCING THE EfFECT OF THE INPUT BIAS CURRENT

Finally, we find that real op-amps have input and output resistances that are not quite ideal!

HO: REAL OP-AMP Input and OUTPUT RESISTANCES

The Input Offset Voltage

For real op-amps, we typically find that if both inputs are grounded, the output will be-saturated!

A: The reason the output is saturated is that real op-amps exhibit a phenomenon called the input offset voltage $V_{o s}$.

The input offset voltage model

This value can be either positive or negative, typically with a magnitude of 5 mV or less ($\left|V_{o s}\right|<5 \mathrm{mV}$).

A real op-amp therefore behaves as if it has a small, internal voltage source at the non-inverting input:

Applying the concept of a virtual short to the ideal op-amp, we find from KVL

$$
\boldsymbol{v}_{-}=\boldsymbol{v}_{+}+\boldsymbol{V}_{o s}
$$

Thus, $v_{-} \neq v_{+}$!

The new virtual "short"

Recall, however, that the input offset voltage is typically very small (i.e., $\left.\left|V_{o s}\right|<5 \mathrm{mV}\right)$, so that $v_{-} \approx v_{+}$.

So, for an op-amp with an input offset voltage, the virtual "short" equation turns out to be:

Small, but large enough to saturate!

Therefore, if $v_{-}=v_{+}=0$, we find that the output voltage of this op-amp is ideally equal to:

$$
\begin{aligned}
V_{\text {out }} & =A_{o p}\left(V_{+}-V_{-}+V_{o s}\right) \\
& =A_{o p}\left(0-0+V_{o s}\right) \\
& =A_{o p} V_{o s}
\end{aligned}
$$

Of course, since the differential voltage $A_{o p}$ is very large, the product $A_{o p} V_{o s}$ is likewise large, such that the output of real op-amps will saturate.

This changes our previous results

Q: Does this mean that $V_{\text {os }}$ will cause the output of op-amp circuits and amplifiers to saturate?

A: Fortunately no!
However, the input offset voltage will affect the output of circuits and amplifiers made with op-amps.

Example: The Input Offset Voltage

Consider an inverting amp constructed with an op-amp exhibiting an input offset voltage of $V_{o s}$:

v - not equal to v_{+}

We know that because of the input offset voltage:

$$
v_{-}=v_{+}+V_{o s}
$$

For the circuit above, the non-inverting terminal of the op-amp is connected to ground (i.e., $v_{+}=0$), and so the virtual "ground" is now described by:

$$
v_{-}=V_{o s}
$$

The current into each terminal of the op-amp is still zero, so that from KCL:
where form KCL and Ohm's Law:
and:

$$
\begin{aligned}
& i_{1}=\frac{v_{\text {in }}-v_{-}}{R_{1}}=\frac{v_{\text {in }}-V_{\text {os }}}{R_{1}} \\
& i_{2}=\frac{v_{-}-v_{\text {out }}}{R_{2}}=\frac{V_{\text {os }}-v_{\text {out }}}{R_{2}}
\end{aligned}
$$

The output has a DC offset!

Combining, we find:

$$
\frac{V_{\text {in }}-V_{\text {os }}}{R_{1}}=\frac{V_{\text {os }}-V_{\text {out }}}{R_{2}}
$$

Performing a little algebra, we can solve this equation for output voltage $v_{\text {out }}$:

$$
v_{\text {out }}=\frac{V_{\text {os }} R_{1}+V_{\text {os }} R_{2}-v_{\text {in }} R_{2}}{R_{1}}
$$

and rearranging:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}+\left(1+\frac{R_{2}}{R_{1}}\right) v_{\text {os }}
$$

Superposition is your friend

Q: Hey! Couldn't we have easily found this result by applying superposition?

A: Absolutely!

Note that if the input offset voltage is zero (its ideal value), this expression simply reduces to the normal inverting amplifier expression:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}
$$

It's the non-inverting amplifier!

Likewise, if we set the input voltage source to ground potential (i.e., $v_{\text {in }}=0$), it is evident that we have a non-inverting amplifier:

And so the output voltage is:

$$
V_{\text {out }}=\left(1+\frac{R_{2}}{R_{1}}\right) V_{\text {os }}
$$

Look at the DC offset!

The sum of these two results provides our previous answer:

Note the term:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}+\left(1+\frac{R_{2}}{R_{1}}\right) v_{\text {os }}
$$

is a constant with respect to $v_{\text {in }}$-its value does not change, even if the input voltage is zero!.

Thus, the term represents an output offset voltage.

$$
\left(1+\frac{R_{2}}{R_{1}}\right) V_{o s}
$$

How do we define gain?

Q: But what is the gain of this amplifier? The ratio $v_{\text {out }} / v_{\text {in }}$ is not a constant!

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=-\left(\frac{R_{2}}{R_{1}}\right)+\left(1+\frac{R_{2}}{R_{1}}\right) \frac{V_{\text {os }}}{v_{\text {in }}} \text { ???? }
$$

A: Remember, it is more accurate and more general to define gain in terms of the derivative:

$$
A_{\text {vo }} \doteq \frac{d v_{\text {out }}}{d v_{\text {in }}}
$$

Which for this case provides the same result for the inverting amplifier:

The Input Bias Current

The input offset current

The values of bias currents $I_{B 1}$ and $I_{B 2}$ are approximately-but not exactlyequal.

As a result, we typically express these currents in terms of their common-mode (i.e., average) and differential modes.

The common mode is called the Input Bias Current:

$$
I_{B}=\frac{I_{B 1}+I_{B 2}}{2} \doteq \text { Input Bias Current }
$$

The differential mode is called the Input Offset Current:

$$
I_{o s}=\left|I_{B 1}-I_{B 2}\right| \doteq \text { Input Offset Current }
$$

They seem so small, yet...

Thus, the two bias currents can be expressed as:

$$
I_{B 1}=I_{B} \pm \frac{I_{o s}}{2} \quad I_{B 2}=I_{B} \mp \frac{I_{o s}}{2}
$$

Typical values of these parameters are, for example, $I_{B}=100 \mathrm{nA}$ and $I_{o s}=10 \mathrm{nA}$.

Q: These bias current values are so tiny, we do we even care about them????
A: Because they can cause offset voltages in op-amp circuits!

Example: The Input Bias Current

Q: How do input bias currents $I_{B 1}$ and $I_{B 2}$ affect amplifier operation?

A: Consider both inverting and non-inverting configurations.

Inverting Configuration

KCL is now a bit more tricky!

In this case, we apply KCL and we find:

$$
i_{1}=i_{2}+I_{B 1}
$$

However, we still find $v_{-} \simeq v_{+}=0$ (neglecting the input offset voltage) by virtue of the virtual short.

Therefore, from KVL and Ohm's Law:

$$
i_{1}=\frac{v_{\text {in }}-v_{-}}{R_{1}}=\frac{v_{\text {in }}}{R_{1}} \quad \text { and } \quad i_{2}=\frac{v_{-}-v_{\text {out }}}{R_{2}}=\frac{-v_{\text {out }}}{R_{2}}
$$

Combining these results:

$$
\frac{v_{\text {in }}}{R_{1}}=\frac{-V_{\text {out }}}{R_{2}}+I_{B 1}
$$

The output voltage is thus:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}+R_{1} I_{B 1}
$$

Should we make R_{1} really small?

Note again that if $I_{B 1}=0$, the result reduces to the expected inverting amplifier equation:

$$
v_{\text {out }}=-\left(\frac{R_{2}}{R_{1}}\right) v_{\text {in }}
$$

The second term in the above expression $\left(I_{B 1} R_{1}\right)$ therefore represents another output offset voltage!

It appears that we should keep the value of R_{1} small to minimize the output offset voltage.

Q: What would a small value of R_{1} do to the amplifier input resistance?

A:

Please welcome the non-inverting config.

Non-Inverting Configuration

Neglecting the input offset voltage, we can use the virtual short to determine that:

$$
v_{-} \simeq v_{i n}
$$

and KCL provides the same result as that of the inverting amplifier:

$$
i_{1}=i_{2}+I_{B 1}
$$

Again, a DC output offset

From KVL and Ohm's Law:
and likewise:

$$
i_{1}=\frac{0-v_{-}}{R_{1}}=\frac{-v_{\text {in }}}{R_{1}}
$$

$$
i_{2}=\frac{v_{-}-v_{\text {out }}}{R_{2}}=\frac{v_{\text {in }}-V_{\text {out }}}{R_{2}}
$$

Combining, we find:

$$
\frac{-V_{\text {in }}}{R_{1}}=\frac{v_{\text {in }}-V_{\text {out }}}{R_{2}}+I_{B 1}
$$

or rearranging:

$$
v_{\text {out }}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{\text {in }}+I_{B 1} R_{2}
$$

$\xrightarrow[i_{1}]{\text { (}}$

We have another trick or two up our sleeve

Again, we find that this result is simply the ideal non-inverting expression:

$$
v_{\text {out }}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{\text {in }}
$$

with an added output offset voltage term:

$$
I_{B 1} R_{2}
$$

In this case, we find that this offset voltage is minimized by making feedback resistor R_{2} small.

In general, we find that the effects of the input bias currents can be minimized by using small resistor values.

However, we will find that there is an additional strategy for minimizing the effects of input bias currents!

Reducing the Effect of Input Bias Current

The voltage $v+$ is non-zero!

A: Let's analyze this circuit to determine how this new resistor helps.

First, notice that the voltage at the non-inverting terminal is now non-zero!
The bias current $I_{B 2}$ means that, by virtue of KVL:

$$
v_{+}=0-R_{3} I_{B 2}=-R_{3} I_{B 2}
$$

Now, because of the virtual short:

$$
v_{-}=v_{+}=-R_{3} I_{B 2}
$$

And from KCL:

$$
i_{1}=i_{2}+I_{B 1}
$$

where from KCL and Ohm's Law:
$i_{1}=\frac{v_{\text {in }}-V_{-}}{R_{1}}=\frac{v_{\text {in }}+R_{3} I_{B 2}}{R_{1}}$

It seems like this just made the offset even larger

And also from KCL and Ohm's Law:

$$
i_{2}=\frac{v_{\text {in }}-v_{\text {out }}}{R_{2}}=\frac{-\left(R_{3} I_{B 2}+v_{\text {out }}\right)}{R_{2}}
$$

Combining these results:

$$
\frac{v_{\text {in }}+R_{3} I_{B 2}}{R_{1}}=\frac{-\left(R_{3} I_{B 2}+v_{\text {out }}\right)}{R_{2}}+I_{B 1}
$$

Performing the usual algebraic gymnastics, we rearrange this result and find that the output voltage is:

$$
v_{\text {out }}=\left(-\frac{R_{2}}{R_{1}}\right) v_{\text {in }}-\left(R_{3} I_{B 2}+\frac{R_{2} R_{3}}{R_{1}} I_{B 2}-R_{2} I_{B 1}\right)
$$

Awl be baak

Again we find the output consists of two terms. The first term is the ideal inverting amplifier result:
and the second is an output D.C. offset:

$$
-\frac{R_{2}}{R_{1}} v_{i n}
$$

and the second is an output D.C. offset:

We must choose the proper value of R_{3}...

A: Say we set the value of resistor R_{3} to equal $R_{3}=R_{1} \| R_{2}$, i.e.:

$$
R_{3}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

In this case, the D.C. offset becomes:

$$
\begin{aligned}
& -\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{B 2}+\frac{R_{2}^{2}}{R_{1}+R_{2}} I_{B 2}-R_{2} I_{B 1}\right) \\
& =-\left(\frac{\left(R_{1}+R_{2}\right) R_{2}}{R_{1}+R_{2}} I_{B 2}-R_{2} I_{B 1}\right) \\
& =R_{2}\left(I_{B 1}-I_{B 2}\right) \\
& =R_{2} I_{o s}
\end{aligned}
$$

Typically, the bias currents $I_{B 1}$ and $I_{B 2}$ are approximately equal, so that offset current $I_{B 1}-I_{B 2}=I_{o s}$ is very tiny.

Therefore, the resulting output offset voltage is likewise very tiny!

...and this is that proper value

Therefore, when designing an amplifier with real op-amps, always include a resistor R_{3} equal to the value:

$$
R_{3}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

This is true regardless of whether we use the inverting or non-inverting

This is just the type of subtle point

 that shows up on an examIf the impedances are complex (i.e., $Z_{1}(\omega)$ and $Z_{2}(\omega)$), then set the resistor R_{3} based on the D.C. values of the impedances:

$$
R_{3}=Z_{1}(w=0) \| Z_{2}(w=0)
$$

In other words, set the capacitors to open circuits and inductors to short circuits.

Real Op-Amp Input and Output Resistances

The input resistances of real op-amps are very large, but of course not infinite!
Typical values of input resistances range from several hundred K Ohms to tens of Mega Ohms.

As a result, there is a small amount of current flowing into input terminals of a real op-amp.

Q: Well of course! We just studied this topic.
We already know that there is a bias current I_{B} flowing into (or out of) real op-amp terminals!

A: This is true! However, there is an additional amount of current flowing into the input terminals. This current is not a constant bias current, but instead is directly proportional to the input terminal voltage.

The input resistance is large, but finite

Because the input resistance is finite, the total current into real op-amp terminals are:

$$
\begin{aligned}
& i_{+}=I_{B 2}+v_{+} / R_{i n} \\
& i_{-}=I_{B 1}+v_{-} / R_{i n}
\end{aligned}
$$

As such, our input terminal circuit model is:

Don't use resistors that are too large!

We find that the input current $v_{-} / R_{\text {in }}$ or $v_{+} / R_{\text {in }}$ will be insignificant (i.e., we can ignore its effect), provided that all other resistors used in an op-amp circuit are significantly less than the op-amp input resistance $R_{\text {in }}$.

Q: But this would imply that we should never use resistor values greater than 100K in our op-amp circuits!

A: That's exactly right!
If the resistor values that you use in your op-circuit design are of the order of $R_{\text {in, }}$ you may find that your circuit behaves quite differently from what you expected!

Worse even than finding haggis on the menu

Now let's examine the real values of op-amp output resistance.
Instead of the ideal value of zero, we find that the output resistances of real op-amps are non-zero (i.e., $R_{o u t}^{o p}>0$)!

Recall that the output resistance of both the inverting and non-inverting configurations is approximately equal to the op-amp output resistance (i.e., $R_{\text {out }}=R_{\text {out }}^{o p}$.

Thus, we find that the output resistance of real inverting and non-inverting amplifiers are likewise non-zero!

Still, Rout is usually pretty darn small

Remember, the output voltage of an amplifier is equal to the input voltage times the open-circuit voltage gain only when the amplifier output is connected to an open circuit.

But, recall that the output voltage will be approximately equal to the opencircuit voltage if the output resistance is much smaller than the load resistance. I.E.,:

$$
v_{\text {out }} \simeq \mathcal{A}_{0} v_{\text {in }} \quad \text { if } \quad R_{\text {out }} \ll R_{L}
$$

Typical values of real op-amp output resistances are less than 5 Ohms!

