An Application of the Inverting

Integrator

Note the time average of a signal $v(t)$ over some arbitrary time T is mathematically stated as:

$$
\text { average of } v(t) \doteq \overline{v(t)}=\frac{1}{T} \int_{0}^{T} v(t) d t
$$

Note that this is exactly the form of the output of an op-amp integrator!

We can use the inverting integrator to determine the time-averaged value of some input signal $v(t)$ over some arbitrary time T.

Make sure you see this!

For example, say we wish to determine the time-averaged value of the input signal:

The time average of this function over a period from $0<t<T=3$ is therefore:

$$
\overline{v_{i n}(t)}=\frac{1}{3} \int_{0}^{3} v_{\text {in }}(t) d t=\frac{5}{3}
$$

This better make sense to you!

We could likewise determine this average using an inverting integrator. We select a resistor R and a capacitor C such that the product $R C=3$ seconds.

The output of this integrator would be:
$v_{\text {out }}(t)=\frac{-1}{3} \int_{0}^{t} v_{\text {in }}\left(t^{\prime}\right) d t^{\prime}=\{\begin{array}{ll}-\frac{5 t}{3} & 0<t<2 \\ \frac{5 t-20}{3} & 2<t<3 \\ -\frac{5}{3} & t>3\end{array} \underbrace{2}$

We must sample a the correct time!

Note that the value of the output voltage at $t=3$ is:

$$
v_{\text {out }}(t=3)=\frac{-1}{3} \int_{0}^{3} v_{\text {in }}\left(t^{\prime}\right) d t^{\prime}=-\frac{5}{3}
$$

The time-averaged value (times -1)!
Thus, we can use the inverting integrator, along with a voltage sampler (e.g., A to D converter) to determine the time-averaged value of a function over some time period T.

