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Op-Amp circuits with

reactive elements
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Now let’s consider the case where the op-amp circuit includes reactive elements:

Q:  Yikes! How do we analyze this?
A:  Don’t panic!  Remember, the relationship between 
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 and 
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 is linear, so we can express the output as a convolution:
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Just find the Eigen value 

Q:  I’m still panicking—how do we determine the impulse response 
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 of this circuit?

A: Say the input voltage 
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 is an Eigen function of linear, time-invariant systems:
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Then, the output voltage is just a scaled version of this input:
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where the “scaling factor” 
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 is the complex Eigen value of the linear operator 
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Express the input as a superposition of eigen values (i.e., the Laplace transform) 

Q:  First of all, how could the input (and output) be this complex function 
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?  Voltages are real-valued!

A:  True, but the real-valued input and output functions can be expressed as a weighted superposition of these complex Eigen functions!
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The Laplace transform(
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 Such that:
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Find the eigen value from 

circuit theory and impedance  

Q:  Still, I don’t know how to find the eigen value 
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A: Remember, we can find 
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 by analyzing the circuit using the Eigen value of each linear circuit element—a value we know as complex impedance!
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For example 

For example, consider this amplifier in with the inverting configuration, where the resistors have been replaced with complex impedances:
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What is the open-circuit voltage gain   
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The eigen value of this linear operator 

From KCL:
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Since 
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, we find from Ohm’s Law :
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And also from Ohm’s Law:
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Equating the last two expressions:
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Rearranging, we find the open-circuit voltage gain:
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The result passes the sanity check
Note that this complex voltage gain 
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 is the Eigen value 
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 of the linear operator relating 
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Note also that if the impedances 
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 and 
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 are real valued (i.e., they’re resistors!):
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Then the voltage gain simplifies to the familiar:
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Or, we can use the Fourier transform 

Now, recall that the variable s  is a complex frequency: 
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If we set 
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, and the functions  
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 in the Laplace domain can be written in the frequency (i.e., Fourier) domain!
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And therefore, for the inverting configuration:
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For the non-inverting  

Likewise, for the non-inverting configuration, we find:
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