Op-Amp circuits with reactive elements

Now let's consider the case where the op-amp circuit includes reactive elements:

A: Don't panic! Remember, the relationship between $v_{\text {out }}$ and $v_{\text {in }}$ is linear, so we can express the output as a convolution:

$$
v_{\text {out }}(t)=\mathcal{L}\left[v_{\text {in }}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{\text {in }}\left(t^{\prime}\right) d t^{\prime}
$$

Just find the Eigen value

Q: I'm still panicking-how do we determine the impulse response $g(t)$ of this circuit?

A: Say the input voltage $v_{\text {in }}(t)$ is an Eigen function of linear, time-invariant systems:

$$
v_{i n}(t)=e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}
$$

Then, the output voltage is just a scaled version of this input:

$$
v_{\text {out }}(t)=\mathcal{L}\left[e^{-s t}\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) e^{-s t} d t^{\prime}=G(s) e^{-s t}
$$

where the "scaling factor" $G(s)$ is the complex Eigen value of the linear operator \mathcal{L}.

Express the input as a superposition of eigen values (i.e., the Laplace transform)

Q: First of all, how could the input (and output) be this complex function $e^{\text {st }}$? Voltages are real-valued!

A: True, but the real-valued input and output functions can be expressed as a weighted superposition of these complex Eigen functions!

$$
v_{i n}(s)=\int_{0}^{+\infty} v_{i n}(t) e^{-s t} d t
$$

The Laplace transform \rightarrow

$$
v_{\text {out }}(s)=\int_{0}^{+\infty} v_{\text {out }}(t) e^{-s t} d t
$$

Such that:

$$
v_{\text {out }}(s)=G(s) v_{\text {in }}(s)
$$

Find the eigen value from circuit theory and impedance

Q: Still, I don't know how to find the eigen value $G(s)$!

A: Remember, we can find $G(s)$ by analyzing the circuit using the Eigen value of each linear circuit element-a value we know as complex impedance!

$$
\frac{v(s)}{i(s)}=Z(s)
$$

For example

For example, consider this amplifier in with the inverting configuration, where the resistors have been replaced with complex impedances:

The eigen value of this linear operator

From KCL:

$$
i_{1}(s)=i_{2}(s)
$$

Since $v(s)=0$, we find from Ohm's Law :

$$
i_{1}(s)=\frac{v_{\text {in }}(s)}{Z_{1}(s)}
$$

And also from Ohm's Law:

$$
i_{2}(s)=\frac{-v_{o u t}^{o c}(s)}{Z_{2}(s)}
$$

Equating the last two expressions:

$$
\frac{v_{i \text { in }}(s)}{Z_{1}(s)}=\frac{-V_{o u t}^{o c}(s)}{Z_{2}(s)}
$$

Rearranging, we find the open-circuit voltage gain:

$$
A_{v_{0}}(s)=\frac{v_{o u f}^{o c}(s)}{v_{i n}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}
$$

The result passes the sanity check

Note that this complex voltage gain $A_{v o}(s)$ is the Eigen value $G(s)$ of the linear operator relating $v_{\text {in }}(t)$ and $v_{\text {out }}(t)$:

$$
v_{\text {out }}(t)=\mathcal{L}\left[v_{\text {in }}(t)\right]
$$

Note also that if the impedances $Z_{1}(s)$ and $Z_{2}(s)$ are real valued (i.e., they're resistors!):

$$
Z_{1}(s)=R_{1}+j 0 \quad \text { and } \quad Z_{2}(s)=R_{2}+j 0
$$

Then the voltage gain simplifies to the familiar:

$$
A_{v o}(s)=\frac{V_{o u t}^{o c}(s)}{V_{\text {in }}(s)}=-\frac{R_{2}}{R_{1}}
$$

Or, we can use the Fourier transform

Now, recall that the variable s is a complex frequency:

$$
s=\sigma+j \omega .
$$

If we set $\sigma=0$, then $s=j \omega$, and the functions $Z(s)$ and $A_{v o}(s)$ in the Laplace domain can be written in the frequency (i.e., Fourier) domain!

$$
A_{v o}(\omega)=\left.A_{v o}(s)\right|_{\sigma=0}
$$

And therefore, for the inverting configuration:
$A_{v_{0}}(\omega)=\frac{v_{o u t}^{o c}(\omega)}{V_{\text {in }}(\omega)}=-\frac{Z_{2}(\omega)}{Z_{1}(\omega)}$

For the non-inverting

Likewise, for the non-inverting configuration, we find:

