1/9

reactive elements

Now let's consider the case where the op-amp circuit includes **reactive** elements:

$$\boldsymbol{v}_{out}(t) = \boldsymbol{\mathcal{L}}\left[\boldsymbol{v}_{in}(t)\right] = \int_{-\infty}^{t} \boldsymbol{g}(t-t') \boldsymbol{v}_{in}(t') dt'$$

Just find the Eigen value

Q: I'm **still** panicking—**how** do we determine the impulse response g(t) of this circuit?

A: Say the input voltage $v_{in}(t)$ is an **Eigen function** of linear, time-invariant systems:

$$\mathbf{v}_{in}(\mathbf{t}) = \mathbf{e}^{st} = \mathbf{e}^{(\sigma+jw)t} = \mathbf{e}^{\sigma t} \mathbf{e}^{jwt}$$

Then, the output voltage is just a scaled version of this input:

$$\boldsymbol{v}_{out}(t) = \mathcal{L}\left[\boldsymbol{e}^{-st}\right] = \int \boldsymbol{g}(t-t') \boldsymbol{e}^{-st} dt' = \boldsymbol{G}(s) \boldsymbol{e}^{-st}$$

where the "scaling factor" G(s) is the complex **Eigen value** of the linear

 $-\infty$

<u>Express the input as a superposition of</u> eigen values (i.e., the Laplace transform)

Q: First of all, **how** could the input (and output) be this **complex** function e^{st} ? Voltages are **real-valued**!

A: True, but the **real-valued** input and output functions can be expressed as a weighted superposition of these **complex** Eigen functions!

$$\boldsymbol{v}_{in}(\boldsymbol{s}) = \int_{0}^{+\infty} \boldsymbol{v}_{in}(\boldsymbol{t}) \boldsymbol{e}^{-\boldsymbol{s}\boldsymbol{t}} d\boldsymbol{t}$$

The Laplace transform→

$$\boldsymbol{v}_{out}(\boldsymbol{s}) = \int_{0}^{+\infty} \boldsymbol{v}_{out}(\boldsymbol{t}) \boldsymbol{e}^{-\boldsymbol{s}\,\boldsymbol{t}} \, d\boldsymbol{t}$$

Such that:

$$\boldsymbol{v}_{out}(\boldsymbol{s}) = \boldsymbol{G}(\boldsymbol{s})\boldsymbol{v}_{in}(\boldsymbol{s})$$

Jim Stiles

Find the eigen value from

circuit theory and impedance

Q: Still, I don't know how to find the eigen value G(s)!

A: Remember, we can find G(s) by analyzing the circuit using the Eigen value of each linear circuit element—a value we know as complex impedance!

The result passes the sanity check

Note that this complex voltage gain $A_{vo}(s)$ is the **Eigen value** G(s) of the linear

operator relating $v_{in}(t)$ and $v_{out}(t)$:

$$\boldsymbol{v}_{out}(t) = \mathcal{L}\left[\boldsymbol{v}_{in}(t)\right]$$

Note also that **if** the impedances $Z_1(s)$ and $Z_2(s)$ are real valued (i.e., they're resistors!):

$$Z_1(s) = R_1 + j0$$
 and $Z_2(s) = R_2 + j0$

Then the voltage gain simplifies to the **familiar**:

$$A_{vo}(S) = \frac{V_{out}^{oc}(S)}{V_{in}(S)} = -\frac{R}{R}$$

Jim Stiles

Or, we can use the Fourier transform

Now, recall that the variable *s* is a **complex frequency**:

$$s = \sigma + j\omega$$
.

If we set $\sigma = 0$, then $s = j\omega$, and the functions Z(s) and $A_{\omega}(s)$ in the Laplace domain can be written in the frequency (i.e., **Fourier**) domain!

$$A_{v_o}(\omega) = A_{v_o}(s)\Big|_{\sigma=0}$$

9/9

For the non-inverting

Likewise, for the non-inverting configuration, we find:

