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The Inverting Differentiator

The circuit shown below is the inverting differentiator.
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Since the circuit uses the inverting configuration, we can conclude that the circuit transfer function is:
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Know the impedance; know the answer
For the capacitor, we know that its complex impedance is:
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And the complex impedance of the resistor is simply the real value:
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Thus, the eigen value of the linear operator relating 
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In other words, the (Laplace transformed) output signal is related to the (Laplace transformed) input signal as:
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From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the derivative of the input signal!

Converting back to time domain
Taking the inverse Laplace Transform, we find:
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For example, if the input is:
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then the output is:
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Or, with Fourier analysis
We likewise could have determined this result using Fourier analysis (i.e., frequency domain):
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Thus, the magnitude of the transfer function is:
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And since:
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the phase of the transfer function is:
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Look at the magnitude and phase
So given that:
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and:
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we find for the input:
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where:
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that the output of the inverting differentiator is:
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and:
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The result is the same!
Therefore, the output is:
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Exactly the same result as before (using Laplace trasforms)!

If you are still unconvinced that this circuit is a differentiator, consider this time-domain analysis.
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Let’s do a time-domain analysis
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From our elementary circuits knowledge, we know that the current through a capacitor (i1(t)) is:
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and from the circuit we see from KVL that:
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therefore the input current is:
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Laplace, Fourier, time-domain: 

the result it the same!
From KCL, we likewise know that:
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and from Ohm’s Law:
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Combining the two previous equations:
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and thus:
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The same result as before!
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