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The Inverting Differentiator

The circuit shown below is the inverting differentiator.
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Since the circuit uses the inverting configuration, we can conclude that the circuit transfer function is:
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For the capacitor, we know that its complex impedance is:
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And the complex impedance of the resistor is simply the real value:
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Thus, the eigen value of the linear operator relating 
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In other words, the (Laplace transformed) output signal is related to the (Laplace transformed) input signal as:
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From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the derivative of the input signal!

Taking the inverse Laplace Transform, we find:
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For example, if the input is:
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then the output is:
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We likewise could have determined this result using Fourier Analysis (i.e., frequency domain):
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Thus, the magnitude of the transfer function is:
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And since:
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the phase of the transfer function is:
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Given that:
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and:
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we find for the input:


[image: image17.wmf]()sin

in

vt

ωt

=


where:
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that the output of the inverting differentiator is:
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and:
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Therefore:
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Exactly the same result as before!

If you are still unconvinced that this circuit is an differentiator, consider this time-domain analysis.






From our elementary circuits knowledge, we know that the current through a capacitor (i1 (t)) is:
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and from the circuit we see from KVL that:
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therefore the input current is:
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From KCL, we likewise know that:
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and from Ohm’s Law:
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Combining the two previous equations:
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and thus:


[image: image28.wmf]1

()()

()

()

oc

out

in

in

vtitR

dvt

CR

dt

dvt

RC

dt

=-

æö

=-

ç÷

èø

=-


The same result as before!
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