The Inverting Integrator

The circuit shown below is the inverting integrator.

It's the inverting configuration!

Since the circuit uses the **inverting** configuration, we can conclude that the circuit transfer function is:

$$G(s) = \frac{V_{out}^{oc}(s)}{V_{in}(s)} = -\frac{Z_2(s)}{Z_1(s)} = -\frac{(1/s C)}{R} = \frac{-1}{s RC}$$

In other words, the output signal is related to the input as:

$$V_{out}^{oc}(s) = rac{-1}{RC} rac{V_{in}(s)}{s}$$

From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the integral of the input signal!

The circuit integrates the input

Taking the inverse Laplace Transform, we find:

$$v_{out}^{oc}(t) = \frac{-1}{RC} \int_{0}^{t} v_{in}(t') dt'$$

For example, if the **input** is:

 $v_{in}(t) = \sin \omega t$

then the **output** is:

$$V_{out}^{oc}(t) = \frac{-1}{RC} \int_{0}^{t} \sin \omega t \, dt' = \frac{-1}{RC} \frac{-1}{\omega} \cos \omega t = \frac{1}{\omega RC} \cos \omega t$$

Or, in the Fourier domain

We likewise could have determined this result using Fourier Analysis (i.e.,

frequency domain):

$$\mathcal{G}(\omega) = \frac{v_{out}^{oc}(\omega)}{v_{in}(\omega)} = -\frac{Z_2(\omega)}{Z_1(\omega)} = -\frac{\left(\frac{1}{j\omega}C\right)}{R} = \frac{j}{\omega RC}$$

Thus, the magnitude of the transfer function is:

$$G(w) = \left| \frac{j}{w RC} \right| = \frac{1}{w RC}$$

And since:

$$j = e^{j\left(\frac{\pi}{2}\right)} = \cos\left(\frac{\pi}{2}\right) + j\sin\left(\frac{\pi}{2}\right)$$

the **phase** of the transfer function is:

$$\angle G(w) = \frac{\pi}{2}$$
 radians = 90°

Jim Stiles

The time-domain solution

From our elementary **circuits knowledge**, we know that the voltage across a capacitor is:

$$v_c(t) = \frac{1}{C} \int_{0}^{t} i_2(t') dt'$$

and from the circuit we see that:

$$v_{c}(t) = v_{-}(t) - v_{out}^{oc}(t) = -v_{out}^{oc}(t)$$

therefore the **output** voltage is:

$$v_{out}^{oc}(t) = -\frac{1}{C} \int_{0}^{t} i_{2}(t') dt'$$

$$v_{in}(t) \xrightarrow{R} v_{in}(t)$$

$$i_{1}(t) \xrightarrow{I} = 0$$

$$v_{in}^{oc}(t)$$

i₂(†)

110

