The Inverting Integrator

The circuit shown below is the inverting integrator.

It's the inverting configuration!

Since the circuit uses the inverting configuration, we can conclude that the circuit transfer function is:

$$
G(s)=\frac{v_{o u t}^{o c}(s)}{v_{i n}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}=-\frac{(1 / s C)}{R}=\frac{-1}{s R C}
$$

In other words, the output signal is related to the input as:

$$
V_{o u t}^{o c}(s)=\frac{-1}{R C} \frac{v_{\text {in }}(s)}{s}
$$

From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the integral of the input signal!

The circuit integrates the input

Taking the inverse Laplace Transform, we find:

$$
v_{o u t}^{o c}(t)=\frac{-1}{R C} \int_{0}^{t} v_{\text {in }}\left(t^{\prime}\right) d t^{\prime}
$$

For example, if the input is:

$$
v_{i n}(t)=\sin \omega t
$$

then the output is:

$$
v_{\text {out }}^{o c}(t)=\frac{-1}{R C} \int_{0}^{t} \sin \omega t d t^{\prime}=\frac{-1}{R C} \frac{-1}{\omega} \cos \omega t=\frac{1}{\omega R C} \cos \omega t
$$

Or, in the Fourier domain

We likewise could have determined this result using Fourier Analysis (i.e., frequency domain):

$$
G(\omega)=\frac{v_{o u t}^{o c}(\omega)}{v_{\text {in }}(\omega)}=-\frac{Z_{2}(\omega)}{Z_{1}(\omega)}=-\frac{(1 / j \omega C)}{R}=\frac{j}{\omega R C}
$$

Thus, the magnitude of the transfer function is:

$$
|G(\omega)|=\left|\frac{j}{\omega R C}\right|=\frac{1}{\omega R C}
$$

And since:

$$
j=e^{j(\pi / 2)}=\cos (\pi / 2)+j \sin (\pi / 2)
$$

the phase of the transfer function is:

$$
\angle G(\omega)=\pi / 2 \text { radians }=90^{\circ}
$$

Magnitude and phase

Given that:
and:

$$
\left|\nu_{\text {out }}^{\text {oc }}(\omega)\right|=|G(\omega)|\left|v_{\text {in }}(\omega)\right|
$$

$$
\angle v_{\text {out }}^{o c}(\omega)=\angle G(\omega)+\angle v_{\text {in }}(\omega)
$$

we find for the input:
where:

$$
v_{i n}(t)=\sin \omega t
$$

$$
\left|v_{\text {in }}(\omega)\right|=1 \quad \text { and } \quad \angle v_{\text {in }}(\omega)=0
$$

that the output of the inverting integrator is:

$$
\begin{array}{ll}
& \left|v_{\text {out }}^{o c}(\omega)\right|=|G(\omega)|\left|v_{\text {in }}(\omega)\right|=\frac{1}{\omega R C} \\
\text { and: } & \angle v_{\text {out }}^{o c}(\omega)=\angle G(\omega)+\angle v_{\text {in }}(\omega)=90^{\circ}+0=90^{\circ}
\end{array}
$$

See, it's an integrator

Therefore:

$$
\begin{aligned}
V_{\text {out }}^{o c}(t) & =\frac{1}{\omega R C} \sin \left(\omega t+90^{\circ}\right) \\
& =\frac{1}{\omega R C} \cos \omega t
\end{aligned}
$$

Exactly the same result as before!

If you are still unconvinced that this circuit is an integrator, consider this timedomain analysis.

The time-domain solution

From our elementary circuits knowledge, we know that the voltage across a capacitor is:

$$
v_{c}(t)=\frac{1}{C} \int_{0}^{t} i_{2}\left(t^{\prime}\right) d t^{\prime}
$$

and from the circuit we see that:

$$
v_{c}(t)=v_{-}(t)-V_{o u t}^{o c}(t)=-v_{o u t}^{o c}(t)
$$

therefore the output voltage is:

$$
v_{\text {out }}^{o c}(t)=-\frac{1}{C} \int_{0}^{t} i_{2}\left(t^{\prime}\right) d t^{\prime}
$$

The same result no matter how we do it!

From KCL, we likewise know that:

$$
i_{1}(t)=i_{2}(t)
$$

and from Ohm's Law:

$$
i_{1}(t)=\frac{v_{i n}(t)-v_{-}(t)}{R_{1}}=\frac{v_{i n}(t)}{R_{1}}
$$

Therefore:

$$
i_{2}(t)=\frac{v_{i n}(t)}{R_{1}}
$$

and thus:

$$
\begin{aligned}
v_{o u t}^{o c}(t) & =\frac{-1}{C} \int_{0}^{t} i_{2}\left(t^{\prime}\right) d t^{\prime} \\
& =\frac{-1}{R C} \int_{0}^{t} v_{i n}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

The same result as before!

