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The Inverting Integrator 
 
The circuit shown below is the inverting integrator. 
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It’s the inverting configuration! 
 
Since the circuit uses the inverting configuration, we can conclude that the 
circuit transfer function is: 
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In other words, the output signal is related to the input as: 
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From our knowledge of Laplace Transforms, we know this means that the output 
signal is proportional to the integral of the input signal! 
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The circuit integrates the input 
 
Taking the inverse Laplace Transform, we find: 
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For example, if the input is: 
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then the output is: 
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Or, in the Fourier domain 
 
We likewise could have determined this result using Fourier Analysis (i.e., 
frequency domain): 
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Thus, the magnitude of the transfer function is: 
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the phase of the transfer function is: 
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Magnitude and phase 
 
Given that: 
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and: 
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we find for the input: 
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that the output of the inverting integrator is: 
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See, it’s an integrator 
 
Therefore: 
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Exactly the same result as before! 
 
If you are still unconvinced that this circuit is an integrator, consider this time-
domain analysis. 
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The time-domain solution 
 
From our elementary circuits 
knowledge, we know that the voltage 
across a capacitor is: 
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and from the circuit we see that: 
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therefore the output voltage is: 
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The same result no matter how we do it! 
 
From KCL, we likewise know that: 
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and from Ohm’s Law: 
 

1
1 1

( ) ( ) ( )( ) in inv t v t v ti t
R R

−−
= =  

 
Therefore: 

2
1

( )( ) inv ti t
R

=  

 
and thus: 

2
0

0

1( ) ( )

1 ( )

t
oc
out

t

in

v t i t dt
C

v t dt
RC

− ′ ′=

− ′ ′=

∫

∫
 

 
The same result as before! 
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