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The Inverting Integrator

The circuit shown below is the inverting integrator.
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Since the circuit uses the inverting configuration, we can conclude that the circuit transfer function is:
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In other words, the output signal is related to the input as:
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From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the integral of the input signal!

Taking the inverse Laplace Transform, we find:


[image: image3.wmf]0

1

()()

t

oc

outin

vtvtdt

RC

-

¢¢

=

ò


For example, if the input is:
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then the output is:
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We likewise could have determined this result using Fourier Analysis (i.e., frequency domain):
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Thus, the magnitude of the transfer function is:
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And since:
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the phase of the transfer function is:
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Given that:


[image: image10.wmf]()()()

oc

outin

v

ωGωvω

=


and:
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we find for the input:
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where:
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that the output of the inverting integrator is:
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and:
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Therefore:
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Exactly the same result as before!

If you are still unconvinced that this circuit is an integrator, consider this time-domain analysis.
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From our elementary circuits knowledge, we know that the voltage across a capacitor is:
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and from the circuit we see that:
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therefore the output voltage is:
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From KCL, we likewise know that:
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and from Ohm’s Law:


[image: image21.wmf]1

11

()()()

()

inin

vtvtvt

it

RR

-

-

==


Therefore:
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and thus:
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The same result as before!
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