2.8 Integrators and Differentiators

Reading Assignment: 105-113

Op-amp circuits can also (and often do) implement reactive elements such as inductors and capacitors.

HO: OP-AMP CIRCUITS WITH REACTIVE ELEMENTS

One important op-amp circuit is the inverting differentiator.

HO: THE INVERTING DIFFERENTIATOR

Likewise the inverting integrator.

HO: THE INVERTING INTEGRATOR

HO: AN APPLICATION OF THE INVERTING INTEGRATOR

Let's do some examples of op-amp circuit analysis with reactive elements.

EXAMPLE: A NON-INVERTING NETWORK

EXAMPLE: AN INVERTING NETWORK

EXAMPLE: ANOTHER INVERTING NETWORK

EXAMPLE: A COMPLEX PROCESSING CIRCUIT

reactive elements

Now let's consider the case where the op-amp circuit includes **reactive** elements:

$$\boldsymbol{v}_{out}(t) = \mathcal{L}\left[\boldsymbol{v}_{in}(t)\right] = \int_{-\infty}^{t} g(t-t') \boldsymbol{v}_{in}(t') dt'$$

Just find the Eigen value

Q: I'm **still** panicking—**how** do we determine the impulse response g(t) of this circuit?

A: Say the input voltage $v_{in}(t)$ is an **Eigen function** of linear, time-invariant systems:

$$\mathbf{v}_{in}(\mathbf{t}) = \mathbf{e}^{st} = \mathbf{e}^{(\sigma+jw)t} = \mathbf{e}^{\sigma t} \mathbf{e}^{jwt}$$

Then, the output voltage is just a scaled version of this input:

$$v_{out}(t) = \mathcal{L}\left[e^{-st}\right] = \int g(t-t') e^{-st} dt' = G(s) e^{-st}$$

where the "scaling factor" G(s) is the complex **Eigen value** of the linear

 $-\infty$

<u>Express the input as a superposition of</u> eigen values (i.e., the Laplace transform)

Q: First of all, **how** could the input (and output) be this **complex** function e^{st} ? Voltages are **real-valued**!

A: True, but the **real-valued** input and output functions can be expressed as a weighted superposition of these **complex** Eigen functions!

$$\boldsymbol{v}_{in}(\boldsymbol{s}) = \int_{0}^{+\infty} \boldsymbol{v}_{in}(\boldsymbol{t}) \boldsymbol{e}^{-\boldsymbol{s}\boldsymbol{t}} d\boldsymbol{t}$$

The Laplace transform→

$$\boldsymbol{v}_{out}(\boldsymbol{s}) = \int_{0}^{+\infty} \boldsymbol{v}_{out}(\boldsymbol{t}) \,\boldsymbol{e}^{-\boldsymbol{s}\,\boldsymbol{t}} \,d\boldsymbol{t}$$

Such that:

$$\boldsymbol{v}_{out}(\boldsymbol{s}) = \boldsymbol{G}(\boldsymbol{s})\boldsymbol{v}_{in}(\boldsymbol{s})$$

Find the eigen value from

circuit theory and impedance

Q: Still, I don't know how to find the eigen value G(s)!

A: Remember, we can find G(s) by analyzing the circuit using the Eigen value of each linear circuit element—a value we know as complex impedance!

The result passes the sanity check

Note that this complex voltage gain $A_{vo}(s)$ is the **Eigen value** G(s) of the linear

operator relating $v_{in}(t)$ and $v_{out}(t)$:

$$\boldsymbol{v}_{out}(t) = \mathcal{L}\left[\boldsymbol{v}_{in}(t)\right]$$

Note also that **if** the impedances $Z_1(s)$ and $Z_2(s)$ are real valued (i.e., they're resistors!):

$$Z_1(s) = R_1 + j0$$
 and $Z_2(s) = R_2 + j0$

Then the voltage gain simplifies to the familiar:

$$A_{v_o}(s) = \frac{V_{out}^{oc}(s)}{V_{in}(s)} = -\frac{R}{R}$$

Or, we can use the Fourier transform

Now, recall that the variable *s* is a **complex frequency**:

$$s = \sigma + j\omega$$
.

If we set $\sigma = 0$, then $s = j\omega$, and the functions Z(s) and $A_{\omega}(s)$ in the Laplace domain can be written in the frequency (i.e., **Fourier**) domain!

$$A_{vo}(\omega) = A_{vo}(S)|_{\sigma=0}$$

For the non-inverting

Likewise, for the non-inverting configuration, we find:

Know the impedance; know the answer

For the **capacitor**, we know that its **complex impedance** is:

$$Z_1(S) = \frac{1}{SC}$$

And the complex impedance of the **resistor** is simply the real value:

 $Z_2(s) = R$

Thus, the eigen value of the linear operator relating $v_{in}(t)$ to $v_{out}^{oc}(t)$ is:

$$\widehat{\sigma}(s) = -\frac{Z_2(s)}{Z_1(s)} = -\frac{R}{\frac{1}{sc}} = -s RC$$

In other words, the (Laplace transformed) **output** signal is related to the (Laplace transformed) **input** signal as:

$$v_{out}^{oc}(s) = -s(RC) v_{in}(s)$$

From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the derivative of the input signal!

Converting back to time domain

Taking the inverse Laplace Transform, we find:

$$V_{out}^{oc}(t) = -RC \ \frac{d v_{in}(t)}{d t}$$

For example, if the **input** is:

 $v_{in}(t) = \sin \omega t$

then the **output** is:

Or, with Fourier analysis

We likewise could have determined this result using Fourier analysis (i.e.,

frequency domain):

$$G(\omega) = \frac{v_{out}^{oc}(\omega)}{v_{in}(\omega)} = -\frac{Z_2(\omega)}{Z_1(\omega)} = -\frac{R}{(1/j\omega C)} = -j \omega RC$$

Thus, the **magnitude** of the transfer function is:

$$|G(w)| = |-jw RC|$$

= w RC

And since:

$$-j = e^{-j(\pi/2)} = \cos(-\pi/2) + j\sin(-\pi/2)$$

the **phase** of the transfer function is:

The result is the same!

Therefore, the output is:

$$V_{out}^{oc}(t) = w RC \sin(wt - 90^\circ)$$

= $-w RC \cos wt$

Exactly the same result as before (using Laplace trasforms)!

If you are still **unconvinced** that this circuit is a differentiator, consider this **time-domain** analysis.

i₂(†)

 $i_{2}(t)$

<u>Let's do a time-domain analysis</u>

+ V_c -

V.

V

ideal

0

From our elementary circuits **knowledge**, we know that the current through a capacitor $(i_1(t))$ is:

$$i_{1}(t) = C \frac{d v_{c}(t)}{dt} \qquad v_{in}(t) \xrightarrow{}_{i_{1}(t)} C$$

and from the circuit we see from KVL that:

 $v_{c}(t) = v_{in}(t) - v_{-}(t) = v_{in}(t)$

therefore the input current is:

$$i_{1}(t) = C \frac{d v_{in}(t)}{dt}$$

Jim Stiles

 $\mathbf{o} v_{out}^{oc}(t)$

Laplace, Fourier, time-domain:

the result it the same!

From KCL, we likewise know that:

$$i_1(t) = i_2(t)$$

and from Ohm's Law:

The Inverting Integrator

The circuit shown below is the inverting integrator.

It's the inverting configuration!

Since the circuit uses the **inverting** configuration, we can conclude that the circuit transfer function is:

$$G(s) = \frac{V_{out}^{oc}(s)}{V_{in}(s)} = -\frac{Z_2(s)}{Z_1(s)} = -\frac{(1/s C)}{R} = \frac{-1}{s RC}$$

In other words, the output signal is related to the input as:

$$V_{out}^{oc}(s) = rac{-1}{RC} rac{V_{in}(s)}{s}$$

From our knowledge of Laplace Transforms, we know this means that the output signal is proportional to the integral of the input signal!

The circuit integrates the input

Taking the inverse Laplace Transform, we find:

$$v_{out}^{oc}(t) = \frac{-1}{RC} \int_{0}^{t} v_{in}(t') dt'$$

For example, if the **input** is:

 $v_{in}(t) = \sin \omega t$

then the **output** is:

$$V_{out}^{oc}(t) = \frac{-1}{RC} \int_{0}^{t} \sin \omega t \, dt' = \frac{-1}{RC} \frac{-1}{\omega} \cos \omega t = \frac{1}{\omega RC} \cos \omega t$$

Or, in the Fourier domain

We likewise could have determined this result using Fourier Analysis (i.e.,

frequency domain):

$$\mathcal{G}(\omega) = \frac{v_{out}^{oc}(\omega)}{v_{in}(\omega)} = -\frac{Z_2(\omega)}{Z_1(\omega)} = -\frac{\left(\frac{1}{j\omega}C\right)}{R} = \frac{j}{\omega RC}$$

Thus, the magnitude of the transfer function is:

$$G(w) = \left| \frac{j}{w RC} \right| = \frac{1}{w RC}$$

And since:

$$j = e^{j\left(\frac{\pi}{2}\right)} = \cos\left(\frac{\pi}{2}\right) + j\sin\left(\frac{\pi}{2}\right)$$

the **phase** of the transfer function is:

$$\angle G(w) = \frac{\pi}{2}$$
 radians = 90°

The time-domain solution

From our elementary **circuits knowledge**, we know that the voltage across a capacitor is:

$$v_c(t) = \frac{1}{C} \int_{0}^{t} i_2(t') dt'$$

and from the circuit we see that:

$$v_{c}(t) = v_{-}(t) - v_{out}^{oc}(t) = -v_{out}^{oc}(t)$$

therefore the **output** voltage is:

$$v_{out}^{oc}(t) = -\frac{1}{C} \int_{0}^{t} i_{2}(t') dt'$$

$$v_{in}(t) \xrightarrow{R} v_{in}(t)$$

$$i_{1}(t) \xrightarrow{I} = 0$$

$$v_{in}^{oc}(t)$$

i₂(†)

110

<u>An Application of the Inverting</u>

Integrator

Note the time average of a signal v (*t*) over some arbitrary time T is mathematically stated as:

Т

1 0

average of
$$v(t) \doteq \overline{v(t)} = \frac{1}{\tau} \int v(t) dt$$

Note that this is **exactly** the form of the output of an op-amp **integrator**!

We can use the inverting integrator to determine the **time-averaged** value of some input signal v(t) over some arbitrary time T.

Make sure you see this!

This better make sense to you!

We could likewise determine this average using an **inverting integrator**. We select a resistor R and a capacitor C such that the product RC = 3 seconds.

The output of this integrator would be:

We must sample a the correct time!

Note that the value of the output voltage **at** *t* = **3** is:

$$v_{out}(t=3) = \frac{-1}{3} \int_{0}^{3} v_{in}(t') dt' = -\frac{5}{3}$$

The time-averaged value (times -1)!

Thus, we can use the inverting integrator, along with a voltage sampler (e.g., A to D converter) to determine the **time-averaged** value of a function over some time period *T*.

Jim Stiles

Example: An Inverting Network

Now let's determine the complex transfer function of this circuit:

It's the inverting configuration!

Note this circuit uses the **inverting** configuration, so that:

$$G(\omega) = -\frac{Z_2(\omega)}{Z_1(\omega)}$$

where $Z_1 = R_1$, and:

 $Z_2 = R_2 \left\| \frac{1}{j\omega C} = \frac{R_2}{1 + j\omega R_2 C} \right\|$

Therefore, the **transfer function** of this circuit is:

$$G(w) = \frac{v_{out}^{oc}(w)}{v_{in}(w)} = -\frac{R_2}{R_1} \frac{1}{1 + jwR_2C}$$

Another low-pass filter

Thus, the transfer function magnitude is:

where:

Thus, just as with the previous example, this circuit is a **low-pass filter**, with **cutoff** frequency ω_0 and pass-band **gain** $(R_2/R_1)^2$.

Example: A Non-

Inverting Network

Let's determine the transfer function $G(\omega) = v_{out}^{oc}(\omega)/v_{in}(\omega)$ for the following circuit: R_2 R_1 V_ V^{oc} out ideal R_3 V+ Vin i,=0 13 C ic

From KCL, we know:

$$i_{3}(\omega) = i_{\mathcal{C}}(\omega) + i_{+}(\omega) = i_{\mathcal{C}}(\omega) + 0 = i_{\mathcal{C}}(\omega)$$

 R_2

ideal

V_

 $v_+(w)$

we have a template!

 R_1

 R_3

The remainder of the circuit is simply the **non-inverting amplifier** that we studied earlier.

Vin

 $\boldsymbol{v}_{out}^{oc}(\omega) = \left(1 + \frac{\boldsymbol{R}_2}{\boldsymbol{R}_1}\right) \boldsymbol{v}_{+}(\omega)$

Combining these two relationships, we can determine the **complex transfer function** for this circuit:

$$\mathcal{G}(\omega) = \frac{v_{out}(\omega)}{v_{in}(\omega)} = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{1}{1 + j\omega R_3 C}\right)$$

Jim Stiles

V^{oc} out

The magnitude of this transfer function is therefore:

 $w_0 = \frac{1}{R_3C}$

where:

This is a low-pass filter—one with pass-band gain!

Example: Another

Inverting Network

Consider now the transfer function of **this** circuit:

Some more enjoyable circuit analysis

To accomplish this analysis, we must first...

Wait! You don't need to explain this to me.

 R_3

İ3

Vin

It is obvious that we can divide this is circuit into two pieces—the first being a complex voltage divider and the second a non-inverting amplifier.

C _

V3

 i_c

 R_1

i1

 V_{3}

R2

V^{oc} out

V-

V+

Can we analyze the circuit this way?

The transfer function of the complex voltage divider is :

 $\frac{v_{out}^{oc}(\omega)}{v_3(\omega)} = -\frac{R_2}{R_1}$

and that of the inverting amplifier:

 $\frac{v_{out}^{oc}(\omega)}{v_{in}(\omega)} = \frac{v_{out}^{oc}(\omega)}{v_{3}(\omega)} \frac{v_{3}(\omega)}{v_{in}(\omega)} = -\frac{R_2}{R_1} \frac{1}{1+j\omega R_3 C}$

<u>My computer suspiciously crashed</u> <u>while writing this (really, it did!)</u>

We cannot divide this circuit into two independent pieces, we must analyze it as one circuit. R_2

<u>An even worse idea than Vista</u>

NO! This idea is as bad as the last one!

We **cannot** specify an impedance for the input network:

After all, would we define this impedance as:

$$Z_{1} = \frac{v_{in} - v_{-}}{i_{3}} \quad \text{or} \quad Z_{1} = \frac{v_{in} - v_{-}}{i_{1}} \quad ??? \quad \text{Windows Vista}^{*}$$

The Eigen value at last!

Performing some algebra, we find:

$$\mathbf{v}_{3} = \left(\frac{\mathbf{R}_{1}}{(\mathbf{R}_{1} + \mathbf{R}_{3}) + j\omega\mathbf{R}_{1}\mathbf{R}_{3}\mathbf{C}}\right)\mathbf{v}_{in}$$

This again is a low-pass filter

We can rearrange this transfer function to find that this circuit is likewise a **low-pass filter** with **pass-band gain**:

$$\mathcal{G}(\omega) = \frac{v_{out}(\omega)}{v_{in}(\omega)} = \frac{-R_2}{R_1 + R_3} \left(\frac{1}{1 + j \left(\frac{\omega}{\omega_o} \right)} \right)$$

where the cutoff frequency ω_0 is:

<u>Example: A Complex</u> <u>Processing Circuit using the</u> <u>Inverting Configuration</u>

Note that we can combine inverting amplifiers to form a more **complex** processing system.

For **example**, say we wish to take **three** input signals $v_1(t)$, $v_2(t)$, and $v_3(t)$, and process them such that the open-circuit output voltage is:

$$v_{out}(t) = 5v_1(t) + \int_{-\infty}^{t} v_2(t') dt' + \frac{d'v_3(t)}{dt}$$

Assuming that we use **ideal** (or near ideal) op-amps, with an **output resistance equal to zero** (or at least very small), we can realize the above signal processor with the following circuit:

