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2.8 Integrators and Differentiators 
 

Reading Assignment: 105-113 
 

Op-amp circuits can also (and often do) implement reactive 
elements such as inductors and capacitors. 

HO: OP-AMP CIRCUITS WITH REACTIVE ELEMENTS 
 
One important op-amp circuit is the inverting differentiator. 

HO: THE INVERTING DIFFERENTIATOR 
 
Likewise the inverting integrator. 
 

HO: THE INVERTING INTEGRATOR 
 

HO: AN APPLICATION OF THE INVERTING INTEGRATOR 
 
 
Let’s do some examples of op-amp circuit analysis with reactive 
elements. 
 

EXAMPLE: A NON-INVERTING NETWORK 
 

EXAMPLE: AN INVERTING NETWORK 
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EXAMPLE: ANOTHER INVERTING NETWORK 
 

EXAMPLE: A COMPLEX PROCESSING CIRCUIT 
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Op-Amp circuits with 
reactive elements 

Now let’s consider the case where the op-amp circuit includes reactive 
elements: 
 
 
 
 
 
 
 
 
 
 
Q:  Yikes! How do we analyze this? 
 
A:  Don’t panic!  Remember, the relationship between outv  and inv  is linear, so we 
can express the output as a convolution: 
 

( ) ( ) ( ) ( )
t

out in inv t v t g t t v t dt
−∞

⎡ ⎤ ′ ′ ′= = −⎣ ⎦ ∫L  

+ 

- vin(t) 

ideal 

C 

R2 

v- 

v+ 

i2 (t) 

vout (t) i1 (t) 
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Just find the Eigen value  
 
Q:  I’m still panicking—how do we determine the impulse response ( )g t  of this 
circuit? 
 
A: Say the input voltage ( )inv t  is an Eigen function of linear, time-invariant 
systems: 

( ) ( )σ j ω t σ t j ω tst
inv t e e e e+= = =  

 
 
Then, the output voltage is just a scaled version of this input: 
 

( ) ( ) ( )
t

st st st
outv t e g t t e dt G s eL − − −

−∞

⎡ ⎤ ′ ′= = − =⎣ ⎦ ∫  

 
where the “scaling factor” ( )G s  is the complex Eigen value of the linear 
operator L . 
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Express the input as a superposition of 
eigen values (i.e., the Laplace transform)  

 
Q:  First of all, how could the input (and output) be this complex function ste ?  
Voltages are real-valued! 
 
A:  True, but the real-valued input and output functions can be expressed as a 
weighted superposition of these complex Eigen functions! 
 

( ) ( )
0

s t
in inv s v t e dt

+∞
−= ∫  

The Laplace transform  

( ) ( )
0

s t
out outv s v t e dt

+∞
−= ∫  

 
 Such that: 
 

( ) ( ) ( )out inv s G s v s=  
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Find the eigen value from  
circuit theory and impedance   

 
Q:  Still, I don’t know how to find the eigen value ( )G s ! 
 
A: Remember, we can find ( )G s  by analyzing the circuit using the Eigen value of 
each linear circuit element—a value we know as complex impedance! 
 
 
 
 

( ) ( )
( )

v s Z s
i s

=  

 

( )v s+ −  

( )Z s  
( )i s  
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For example  
 
For example, consider this amplifier in with the inverting configuration, where 
the resistors have been replaced with complex impedances: 
 
 
 
 
 
 
 
 
 
 
 
 
 

What is the open-circuit voltage gain   ( )( ) ( )
oc
out

vo
in

v sA s v s=    ? 

 
 

+ 

- vin (s) 

ideal 

Z2(s) 

v- 

v+ 

i2 (s) 

( )oc
outv s  i1 (s) 

Z1(s) 

0 

0 
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The eigen value of this linear operator  
 
From KCL: 

1 2( ) ( )i s i s=  
 

Since ( ) 0v s− = , we find from Ohm’s Law : 
 

1
1

( )( )
( )

inv si s
Z s

=  

And also from Ohm’s Law: 
 

2
2

( )( )
( )

oc
outv si s

Z s
−

=  

 
Equating the last two expressions: 
 

1 2

( ) ( )
( ) ( )

oc
in outv s v s

Z s Z s
−

=  

 
Rearranging, we find the open-circuit voltage gain: 
 

2

1

( ) ( )
A ( )

( ) ( )

oc
out

vo
in

v s Z ss
v s Z s

= = −  

+ 

- vin (s) 

ideal 

Z2(s) 

v- 

v+ 

i2 (s) 

( )oc
outv s  i1 (s) 

Z1(s) 
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The result passes the sanity check 
 
Note that this complex voltage gain A ( )vo s  is the Eigen value ( )G s  of the linear 
operator relating ( )inv t  and ( )outv t : 
 

( ) ( )out inv t v t⎡ ⎤= ⎣ ⎦L  

 
 
Note also that if the impedances 1( )Z s  and 2( )Z s  are real valued (i.e., they’re 
resistors!): 
 

1 1 2 2( ) 0 and ( ) 0Z s R j Z s R j= + = +  
 

 
Then the voltage gain simplifies to the familiar: 
 
 

2

1

( )
A ( )

( )

oc
out

vo
in

v s Rs
v s R

= = −  
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Or, we can use the Fourier transform  
 
Now, recall that the variable s  is a complex frequency:  
 

s jσ ω= + . 
 
If we set 0σ = , then s jω= , and the functions  ( )Z s  and A ( )vo s  in the Laplace 
domain can be written in the frequency (i.e., Fourier) domain! 
 

0
A ( ) A ( )vo vo σ

ω s
=

=  
 

And therefore, for the inverting configuration: 
 

2

1

( ) ( )
A ( )

( ) ( )

oc
out

vo
in

v ω Z ωω
v ω Z ω

= = −  

 

+ 

- ( )inv ω  

ideal 

2( )Z ω  

( )oc
outv ω  

1( )Z ω  
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For the non-inverting   
 
Likewise, for the non-inverting configuration, we find: 
 
 

2

1

( ) ( )
A ( ) 1

( ) ( )

oc
out

vo
in

v ω Z ωω
v ω Z ω

= = +  

 
2

1

( ) ( )
A ( ) 1

( ) ( )

oc
out

vo
in

v s Z ss
v s Z s

= = +  

 

+ 

- 

( )inv ω  

ideal 

2( )Z ω  

( )oc
outv ω  

1( )Z ω  
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The Inverting Differentiator 
 
The circuit shown below is the inverting differentiator. 
 
 
 
 
 
 
 
 
 
 
 
 
Since the circuit uses the inverting configuration, we can conclude that the 
circuit transfer function is: 
 

2

1

( ) ( )
( )

( ) ( )

oc
out

in

v s Z sG s
v s Z s

= = −  

 

+ 

- (s)inv  

ideal 

C 

R 

(s)oc
outv  
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Know the impedance; know the answer 
 
For the capacitor, we know that its complex impedance is: 
 

1
1( )Z s

sC
=  

 
And the complex impedance of the resistor is simply the real value: 
 

2( )Z s R=  
 
Thus, the eigen value of the linear operator relating ( )inv t  to ( )oc

outv t  is: 
 

2
1

1

( )
( )

( ) sC

Z s RG s s RC
Z s

= − = − = −  

 
In other words, the (Laplace transformed) output signal is related to the 
(Laplace transformed) input signal as: 
 

( )( ) ( )oc
out inv s s RC v s= −  

 
From our knowledge of Laplace Transforms, we know this means that the output 
signal is proportional to the derivative of the input signal! 
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Converting back to time domain 
 
 
Taking the inverse Laplace Transform, we find: 
 

( )
( )oc in

out
d v tv t RC

d t
= −  

 
For example, if the input is: 
 

( ) sininv t ωt=  
 

then the output is: 
 

(t)
( )

sin

cos

oc in
out

d vv t RC
dt

d ωtRC
dt

ω RC ωt

= −

= −

= −
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Or, with Fourier analysis 
 
We likewise could have determined this result using Fourier analysis (i.e., 
frequency domain): 
 

( )
2

1

( ) ( )
( )

( ) ( ) 1

oc
out

in

v ω Z ω RG ω j ω RC
v ω Z ω jωC

= = − = − = −  

 
Thus, the magnitude of the transfer function is: 
 

( )G ω jω RC
ω RC

= −

=
 

And since: 
 

( ) ( ) ( )2 cos sin2 2
jj e j
π π π−− = = − + −  

 
the phase of the transfer function is: 
 

( )   radians2
90

πG ω∠ = −

= −
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Look at the magnitude and phase 
 
So given that: 

 
( ) ( ) ( )oc

out inv ω G ω v ω=  

and: 
 

( ) ( ) ( )oc
out inv ω G ω v ω∠ = ∠ + ∠  

 
we find for the input: 
 

( ) sininv t ωt=  
where: 
 

( ) 1       and        ( ) 0in inv ω v ω= ∠ =  
 

that the output of the inverting differentiator is: 
 

( ) ( ) ( )oc
out inv ω G ω v ω ω RC= =  

and: 
 

( ) ( ) ( ) 90 0 90oc
out inv ω G ω v ω∠ = ∠ + ∠ = − + = −  
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The result is the same! 
 
Therefore, the output is: 
 

( )( ) sin 90
cos

oc
outv t ω RC ωt

ω RC ωt
= −

= −
 

 
Exactly the same result as before (using Laplace trasforms)! 
 
If you are still unconvinced that this circuit is a differentiator, consider this 
time-domain analysis. 
 
 
 
 
 
 
 
 
 
 
 
 

+  vc  - 

+ 

- vin (t) 

ideal C 

R 

v- 

v+ 

i2 (t) 

( )oc
outv t  i1 (t) 0 
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Let’s do a time-domain analysis 
 
From our elementary circuits 
knowledge, we know that the 
current through a capacitor 
(i1(t)) is: 
 

1
( )

( ) cd v ti t C
dt

=  

 
and from the circuit we see from 
KVL that: 
 

( ) ( ) ( ) ( )c in inv t v t v t v t−= − =  
 

therefore the input current is: 
 

1
( )( ) ind v ti t C

dt
=  

 

+  vc  - 

+ 

- vin (t) 

ideal C 

R 

v- 

v+ 

i2 (t) 

( )oc
outv t  i1 (t) 0 
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Laplace, Fourier, time-domain:  
the result it the same! 

 
From KCL, we likewise know that: 
 

1 2( ) ( )i t i t=  
 

and from Ohm’s Law: 
 

1
2

( ) ( ) ( )
( )

oc oc
out outv t v t v ti t

R R
−

= = −  

 
Combining the two previous equations: 
 

1( ) ( )oc
outv t i t R= −  

 
and thus: 
 

1
( ) ( )

( ) ( )oc in in
out

d v t d v tv t i t R C R RC
dt dt

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

The same result as before! 

+  vc  - 

+ 

- vin (t) 

ideal C 

R 

v- 

v+ 

i2 (t) 

( )oc
outv t  i1 (t) 0 
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The Inverting Integrator 
 
The circuit shown below is the inverting integrator. 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

- vin (s) 

ideal 

C 

R v- 

v+ 

i2 (s) 

( )oc
outv s  i1 (s) 



 

2/23/2011 The Inverting Integrator lecture 2/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

It’s the inverting configuration! 
 
Since the circuit uses the inverting configuration, we can conclude that the 
circuit transfer function is: 
 

( )2

1

1( ) ( ) 1( )
( ) ( )

oc
out

in

s Cv s Z sG s
v s Z s R s RC

−
= = − = − =  

 
In other words, the output signal is related to the input as: 
 

( )1( )
s

oc in
out

v sv s
RC
−

=  

 
From our knowledge of Laplace Transforms, we know this means that the output 
signal is proportional to the integral of the input signal! 
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The circuit integrates the input 
 
Taking the inverse Laplace Transform, we find: 
 

0

1( ) ( )
t

oc
out inv t v t dt

RC
− ′ ′= ∫  

 
For example, if the input is: 
 

( ) sininv t ωt=  
 

then the output is: 
 

0

1 1 1 1( ) sin cos cos
t

oc
outv t ωt dt ωt ωt

RC RC ω ω RC
− − −′= = =∫  
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Or, in the Fourier domain 
 
We likewise could have determined this result using Fourier Analysis (i.e., 
frequency domain): 
 

( )2

1

1( ) ( )
( )

( ) ( )

oc
out

in

jω Cv ω Z ω jG ω
v ω Z ω R ω RC

= = − = − =  

 
Thus, the magnitude of the transfer function is: 
 

1( ) jG ω
ω RC ω RC

= =  

And since: 
( ) ( ) ( )2 cos sin2 2

jj e j
π π π= = +  

 
the phase of the transfer function is: 
 

( )   radians 902
πG ω∠ = =  
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Magnitude and phase 
 
Given that: 
 

( ) ( ) ( )oc
out inv ω G ω v ω=  

 
and: 

( ) ( ) ( )oc
out inv ω G ω v ω∠ = ∠ + ∠  

 
we find for the input: 
 

( ) sininv t ωt=  
where: 

( ) 1       and        ( ) 0in inv ω v ω= ∠ =  
 

that the output of the inverting integrator is: 
 

1( ) ( ) ( )oc
out inv ω G ω v ω

ω RC
= =  

and: 
( ) ( ) ( ) 90 0 90oc

out inv ω G ω v ω∠ = ∠ + ∠ = + =  
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See, it’s an integrator 
 
Therefore: 
 

( )1( ) sin 90

1 cos

oc
outv t ωt

ω RC

ωt
ω RC

= +

=
 

 
Exactly the same result as before! 
 
If you are still unconvinced that this circuit is an integrator, consider this time-
domain analysis. 
 
 
 
 
 
 
 
 
 
 

+ 

- vin(t) 

ideal 

C 

R v- 

v+ 

i2 (t) 

( )oc
outv t  i1 (t) 

+  vc  - 

0i− =  
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The time-domain solution 
 
From our elementary circuits 
knowledge, we know that the voltage 
across a capacitor is: 
 

2
0

1( ) ( )
t

cv t i t dt
C

′ ′= ∫  

 
and from the circuit we see that: 
 

( ) ( ) ( ) ( )oc oc
c out outv t v t v t v t−= − = −  

 
therefore the output voltage is: 
 

2
0

1( ) ( )
t

oc
outv t i t dt

C
′ ′= − ∫  

 

+ 

- vin(t) 

ideal 

C 

R v- 

v+ 

i2 (t) 

( )oc
outv t  i1 (t) 

+  vc  - 

0i− =  
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The same result no matter how we do it! 
 
From KCL, we likewise know that: 
 

1 2( ) ( )i t i t=  
 

and from Ohm’s Law: 
 

1
1 1

( ) ( ) ( )( ) in inv t v t v ti t
R R

−−
= =  

 
Therefore: 

2
1

( )( ) inv ti t
R

=  

 
and thus: 

2
0

0

1( ) ( )

1 ( )

t
oc
out

t

in

v t i t dt
C

v t dt
RC

− ′ ′=

− ′ ′=

∫

∫
 

 
The same result as before! 
 

+ 

- vin(t) 

ideal 

C 

R v- 

v+ 

i2 (t) 

( )oc
outv t  i1 (t) 

+  vc  - 

0i− =  
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An Application of the Inverting 
Integrator 

 
Note the time average of a signal v (t) over some arbitrary time T  is 
mathematically stated as: 
 

0

1average of ( ) ( ) ( )
T

v t v t v t dt
T

= ∫  

 
 
Note that this is exactly the form of the output of an op-amp integrator! 
 
 
We can use the inverting integrator to determine the time-averaged value of 
some input signal v (t) over some arbitrary time T. 
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Make sure you see this! 
 
For example, say we wish to determine the time-averaged value of the input 
signal: 
 
 
 
 
 
 
 
 
 
 

I.E.,                                    
5 0 2

( ) 5 2 3
0 3

in

t
v t t

t

< <⎧
⎪= − < <⎨
⎪ >⎩

 

 
The time average of this function over a period from 0 < t < T=3 is therefore: 
 

3

0

1 5( ) ( )
3 3in inv t v t dt= =∫  

 

5 

-5 

1 2 3 4 t 

vin(t) 

0 
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This better make sense to you! 
 
We could likewise determine this average using an inverting integrator.  We 
select a resistor R and a capacitor C  such that the product RC = 3 seconds.   
 
The output of this integrator would be: 
 

0

5
0 2

3
1 5 20( ) ( ) 2 3

3 3
5 3
3

t

out in

t t

tv t v t dt t

t

⎧
− < <⎪
⎪

− −⎪′ ′= = < <⎨
⎪
⎪− >⎪⎩

∫  

 
 
 
 
 
 
 
 
 
 

( )outv t  

5
3

−  

10
3

−  

1 2 3 4 t 
0 
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We must sample a the correct time! 
 
Note that the value of the output voltage at t =3 is: 
 

3

0

1 5( 3) ( ) 
3 3out inv t v t dt− ′ ′= = = −∫  

 
The time-averaged value (times –1)!   
 
Thus, we can use the inverting integrator, along with a voltage sampler (e.g., A to 
D converter) to determine the time-averaged value of a function over some 
time period T. 
 
 
 
 

vin (t) 
vo (t) 

( ) ( )out outv t T v t= = −  

t =T=RC 
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Example: An Inverting Network 
 
Now let’s determine the complex transfer function of this circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

- vin 
oc
outv  ideal 

R2 

R1 v- 

v+ 

C 



 

2/28/2011 Example An Inverting Network lecture 2/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

It’s the inverting configuration! 
 
Note this circuit uses the inverting configuration, so that: 
 
 

2

1

( )
( )

( )
Z ωG ω
Z ω

= −  

 
where 1 1Z R= , and: 
 

2
2 2

2

1Z
1

RR jωC jωR C
= =

+
 

 
 
Therefore, the transfer function of this circuit is: 
 
 

2

1 2

( ) 1( )
( ) 1

oc
out

in

v ω RG ω
v ω R jωR C

= = −
+
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Another low-pass filter 
 
Thus, the transfer function magnitude is: 
 

2
2 2

2
1

0

1( )
1

RG ω
R ω

ω

⎛ ⎞
= −⎜ ⎟

⎛ ⎞⎝ ⎠ + ⎜ ⎟
⎝ ⎠

 

where: 
 

0
2

1
R C

ω =  

 
Thus, just as with the previous example, this circuit is a low-pass filter, with 
cutoff frequency 0ω  and pass-band gain ( )22 1R R . 
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Example: A Non- 
Inverting Network 

 
Let’s determine the transfer function ( ) ( ) ( )oc

out inG ω v ω v ω=  for the following 
circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2 R1 

+ 

- 
oc
outv  

ideal 
v+ 

v- 

vin 
R3 

C 
i3 

iC 

i+=0 



 

2/28/2011 Example A NonInverting Network lecture 2/4 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Some enjoyable circuit analysis 
 
From KCL, we know: 
 

3( ) ( ) ( ) ( ) 0 ( )C C Ci ω i ω i ω i ω i ω+= + = + =  
 
where: 

3
3

( ) ( ) ( ) 0
( )           and         ( ) ( )

1
in

C
v ω v ω v ωi ω i ω j ωC v ω

R
j ωC

+ +
+

− −
= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Equating, we find an expression 
involving ( )inv ω  and 2( )v ω  only: 
 

3

( ) ( )
( )inv ω v ω j ωC v ω

R
+

+

−
=  

 
and performing a little algebra, we 
find: 
 

2
3

( )
( )

1
inv ωv ω
jωR C

=
+

  

R2 R1 

+ 

- 
oc
outv  

ideal 
v+ 

v- 

vin 
R3 

C 
i3 

iC 

i+=0 
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No need to go further:  
we have a template! 

 
The remainder of the circuit is simply the non-inverting amplifier that we 
studied earlier.   
 
We know that: 
 

2

1

( ) 1 ( )oc
out

Rv v
R +

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

ω ω  

 
Combining these two relationships, we 
can determine the complex transfer 
function for this circuit: 
 
 

2

1 3

( ) 1( ) 1
( ) 1

out

in

v ω RG ω
v ω R jωR C

⎛ ⎞⎛ ⎞
= = + ⎜ ⎟⎜ ⎟

+⎝ ⎠ ⎝ ⎠
 

 

oc
outv  

R2 R1 

+ 

- 

ideal 
( )v ω+  

v- 

vin 
R3 

C 
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It’s a low-pass filter!!! 
 
The magnitude of this transfer function is therefore: 
 

2
2 2

2
1

0

1( ) 1
1

RG ω
R ω

ω

⎛ ⎞
= +⎜ ⎟

⎛ ⎞⎝ ⎠ + ⎜ ⎟
⎝ ⎠

 

where: 

0
3

1ω
R C

=  

 
This is a low-pass filter—one with pass-band gain! 
 
 
 
 
 
 
 
 
 
 

0ω  logω  

2
( ) (dB)G ω  

2

2

1

1
R

R
+

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Example: Another 
Inverting Network 

 
 
Consider now the transfer function of this circuit: 
 
 
 
 
 
 
 
 
 
 
 

Ci  

v3 

oc
outv  ideal 

R2 

R1 v- 

v+ 
i1 

i2 

vin 
R3 

C 
i3 

+ 

- 
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Some more enjoyable circuit analysis 
 
To accomplish this analysis, we must first… 
 
  
  
 
 
 
 

 

Wait! You don’t need to explain this to me.   
 
It is obvious that we can divide this is circuit into 
two pieces—the first being a complex voltage 
divider and the second a non-inverting amplifier. 
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Can we analyze the circuit this way? 
 
The transfer function of the complex voltage divider is : 
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and that of the inverting amplifier: 
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And so of course I have correctly 
determined that the transfer 
function of this circuit is: 
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No, we cannot  
 
NO! This is not correct: 
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The problem with the above “analysis” is that we cannot apply this complex 
voltage divider equation to determine 3( )v ω : 
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The reason of course is that the output of this voltage divider is not open-
circuited, and thus current 3( ) ( )Ci ω i ω≠ .   
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My computer suspiciously crashed  
while writing this (really, it did!) 

 
We cannot divide this circuit into two independent pieces, we must analyze it as 
one circuit. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Of course what I meant to say was that we should 
determine the impedance Z1  of input network, and 
then use the inverting configuration equation 
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An even worse idea than Vista 
 
 
NO!  This idea is as bad as the last one!   
 
 
We cannot specify an impedance for the input network: 
 
 
 
 
 
 
 
 
After all, would we define this impedance as:  
 

3
1

1
1orin inv v v vZ Z

i i
− −− −

= =    ??? 

 

v3 R1 
v- 

i1 

vin 
R3 

C 
i3 

Ci  



 

2/28/2011 Example Another Inverting Network lecture 7/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Don’t look for templates: 
trust what you know 

 
So, there is no easy or direct way to solve 
this circuit, we must consult Mr. Kirchoff and 
his laws! 

 
 
 
 
 
 
We know that 1 2i i= , where: 
 

3 3
1 2

1 1 2 2

         and           out outv v v v v vi i
R R R R

− +− − −
= = = =  

 
Combining these equations, we get the expected result: 
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Don’t forget virtual ground! 
 
We must therefore determine 3v  in terms of iv :  
 
 
 
 
 
 
 
Note R1 and C are connected in parallel! 
 
Thus, from voltage division, we find: 
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The Eigen value at last! 
 
 
Performing some algebra, we find: 
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we finally discover that: 
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This again is a low-pass filter 
 
We can rearrange this transfer function to find that this circuit is likewise a 
low-pass filter with pass-band gain: 
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where the cutoff frequency 0ω  is: 
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I wish I had a 
nickel for every 
time my software 
has crashed—oh 
wait, I do! 
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Example: A Complex  
Processing Circuit using the  

Inverting Configuration 
 
 
Note that we can combine inverting amplifiers to form a more complex 
processing system.   
 
For example, say we wish to take three input signals 1 2 3( ), v ( ), and ( )v t t v t , and 
process them such that the open-circuit output voltage is: 
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Assuming that we use ideal (or near ideal) op-amps, with an output resistance 
equal to zero (or at least very small), we can realize the above signal processor 
with the following circuit: 
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This circuit performs this operation! 
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