Current Steering Circuits

A current mirror may consist of many MOSFET current sources!

This circuit is particularly useful in integrated circuit design, where one resistor R is used to make multiple current sources.

Q: What if we want to make the sources have different current values? Do we need to make additional current mirrors?

A: NO!!

Recall that the current mirror simply ensures that the gate to source voltages of each transistor is equal to the gate to source voltage of the reference:

$$
V_{G S}^{\text {ref }}=V_{G S 1}=V_{G S 2}=V_{G S 3}=\cdots
$$

Therefore, if each transistor is identical (i.e., $K_{\text {ref }}=K_{1}=\cdots$, and $V_{t}^{\text {ref }}=V_{+1}=V_{+2}=\cdots$) then:

$$
\begin{aligned}
I_{r e f} & =K_{r e f}\left(V_{G S}^{\text {ref }}-V_{t}^{r e f}\right)^{2} \\
& =K_{n}\left(V_{G S n}-V_{t n}\right)^{2}=I_{D n}
\end{aligned}
$$

In other words, if each transistor Q_{n} is identical to $Q_{\text {ref }}$, then each current $I_{D n}$ will equal reference current $I_{\text {ref }}$.

But, consider what happens if the MOSFETS are not identical.
Specifically, consider the case where $K_{n} \neq K_{\text {ref }}$ (but $V_{t n}=V_{t}^{\text {ref }}$).
Remember, we know that $V_{G S n}=V_{G S}^{\text {ref }}$ still, even when $K_{n} \neq K_{\text {ref }}$.
Thus, the drain current $I_{D n}$ will now be:

$$
\begin{aligned}
I_{D n} & =K_{n}\left(V_{G S n}-V_{t n}\right)^{2} \\
& =K_{n}\left(V_{G S}^{\text {ref }}-V_{t}^{\text {ref }}\right)^{2} \\
& =K_{n}\left(\frac{I_{\text {ref }}}{K_{\text {ref }}}\right) \\
& =\left(\frac{K_{n}}{K_{\text {ref }}}\right) I_{\text {ref }}
\end{aligned}
$$

The drain current is a scaled value of $I_{\text {ref }}!$

For example, if K_{1} is twice that of $K_{\text {ref }}$ (i.e., $K_{1}=2 K_{\text {ref }}$), then $I_{D 1}$ will be twice as large as $I_{\text {ref }}$ (i.e., $I_{1}=2 I_{\text {ref }}$).

From the standpoint of integrated circuit design, we can change the value of K by modifying the MOSFET channel width-tolength ratio (WIL) for each transistor.

$$
\frac{K_{n}}{K_{\text {ref }}}=\frac{1 / 2 k^{\prime}(W / L)_{n}}{1 / 2 k^{\prime}(W / L)_{\text {ref }}}=\frac{(W / L)_{n}}{(W / L)_{\text {ref }}}
$$

