VDD

RŚ

Iref

## **Current Steering Circuits**

A current mirror may consist of **many** MOSFET current sources!

VDD

 $Q_2$ 

 $R_{L1} \underbrace{}_{L1} = I_{ref} \qquad R_{L2} \underbrace{}_{L2} = I_{ref} \qquad R_{L3} \underbrace{}_{L3} = I_{ref}$ 

VDD

This circuit is particularly useful in integrated circuit design, where **one** resistor *R* is used to make **multiple** current sources.

**Q:** What if we want to make the sources have **different** current values? Do we need to make **additional** current mirrors?

## **A:** NO!!

Recall that the current mirror simply ensures that the gate to source voltages of **each** transistor is **equal** to the gate to source voltage of the **reference**:

VDD

$$V_{G5}^{ref} = V_{G51} = V_{G52} = V_{G53} = \cdots$$

Therefore, **if** each transistor is identical (i.e.,  $K_{ref} = K_1 = \cdots$ , and  $V_t^{ref} = V_{t1} = V_{t2} = \cdots$ ) then:

$$I_{ref} = K_{ref} \left( V_{GS}^{ref} - V_t^{ref} \right)^2$$
$$= K_n \left( V_{GSn} - V_{tn} \right)^2 = I_{Dn}$$

In other words, if each transistor  $Q_n$  is identical to  $Q_{ref}$ , then each current  $I_{Dn}$  will equal reference current  $I_{ref}$ .

**But**, consider what happens if the MOSFETS are not identical. Specifically, consider the case where  $K_n \neq K_{ref}$  (but  $V_{tn} = V_t^{ref}$ ).

Remember, we know that  $V_{GSn} = V_{GS}^{ref}$  still, even when  $K_n \neq K_{ref}$ . Thus, the drain current  $I_{Dn}$  will now be:

$$I_{Dn} = K_n \left( V_{GSn} - V_{tn} \right)^2$$
$$= K_n \left( V_{GS}^{ref} - V_t^{ref} \right)^2$$
$$= K_n \left( \frac{I_{ref}}{K_{ref}} \right)$$
$$= \left( \frac{K_n}{K_{ref}} \right) I_{ref}$$

The drain current is a scaled value of  $I_{ref}$ !

For example, if  $K_1$  is twice that of  $K_{ref}$  (i.e.,  $K_1 = 2K_{ref}$ ), then  $I_{D1}$  will be twice as large as  $I_{ref}$  (i.e.,  $I_1 = 2I_{ref}$ ).

From the standpoint of integrated circuit design, we can change the value of K by modifying the MOSFET channel width-tolength ratio (W/L) for each transistor.



