Example: Biasing of

 Discrete MOSFET

 Discrete MOSFET}

Amplifiers

16.0

If the MOSFET has device values $K=1.0 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t}=1.0 \mathrm{~V}$, determine the resistor values to bias this MOSFET with a DC drain current of:

$$
I_{D}=4 \mathrm{~mA}
$$

1. Given the desired value of I_{D}, make source voltage $V_{s}=V_{D 0} / 4=4.0 \mathrm{~V}$, i.e. set the source resistor $R_{s} \mathrm{to}$:

$$
R_{s}=\frac{V_{s}}{I_{0}}=\frac{4.0}{4.0}=1 \mathrm{k} \Omega
$$

2. Now determine the required value of $V_{G S}$. Since $I_{D}=K\left(V_{G S}-V_{t}\right)^{2}$, we find that $V_{G S}$ should be:

$$
\begin{aligned}
V_{G S} & =\sqrt{\frac{I_{D}}{K}}+V_{+} \\
& =\sqrt{\frac{4.0}{1.0}}+1.0 \\
& =3.0 \mathrm{~V}
\end{aligned}
$$

3. Set the required value of gate voltage V_{G}.

$$
\begin{aligned}
V_{G} & =V_{G S}+V_{S} \\
& =3.0+4.0 \\
& =7.0 \mathrm{~V}
\end{aligned}
$$

Since the gate current is zero $\left(i_{G}=0\right)$, we find from voltage division that:

$$
V_{G}=\frac{V_{D D}}{\left(\frac{R_{1}}{R_{2}}\right)+1}
$$

Therefore:

$$
\begin{aligned}
R_{1} / R_{2} & =\frac{V_{D D}}{V_{G}}-1 \\
& =\frac{16.0}{7.0}-1 \\
& =\frac{9}{7}
\end{aligned}
$$

We need a second equation to explicitly determine the resistors values-the sum of the two resistances, for example.

We make the resistors as large a practicable. For example:

$$
R_{1}+R_{2}=240 \mathrm{~K}
$$

Therefore:

$$
\frac{9}{7} R_{2}+R_{2}=240
$$

$$
\frac{16}{7} R_{2}=240
$$

and thus:

$$
R_{1}=135 \mathrm{~K} \Omega \quad \text { and } \quad R_{2}=105 \mathrm{~K} \Omega
$$

4. Set the required value of $D C$ drain voltage V_{0}.

Set the drain voltage V_{D} to a value half-way between $V_{D D}$ and $V_{G}-V_{t}$!

In other words, set the DC drain voltage to be:

$$
\begin{aligned}
V_{D} & =\frac{V_{D D}+\left(V_{G}-V_{t}\right)}{2} \\
& =\frac{16+(7.0-1.0)}{2} \\
& =11.0 \mathrm{~V}^{2}
\end{aligned}
$$

To achieve this, we must select the drain resistor R_{0} so that:

