<u>MOSFET Biasing using a</u> <u>Single Power Supply</u>

The general form of a **single**-supply MOSFET amplifier biasing circuit is:

Just like BJT biasing, we typically attempt to satisfy three main bias design goals:

1) Maximize Gain

Typically, the small-signal voltage gain of a MOSFET amplifier will be proportional to transconductance g_m :

$A_{vo} \propto g_m$

Thus, to maximize the amplifier voltage gain, we must **maximize** the MOSFET transconductance.

Q: What does this have to do with D.C. biasing?

A: Recall that the transconductance depends on the DC excess gate voltage:

$$g_m = 2 K \left(V_{GS} - V_{t} \right)$$

Another way to consider transconductance is to express it in terms of DC drain current I_{D} . Recall this DC current is related to the DC excess gate voltage (in satureation!) as:

$$I_{D} = K \left(V_{GS} - V_{t} \right)^{2} \implies \left(V_{GS} - V_{t} \right) = \sqrt{\frac{I_{D}}{K}}$$

And so transconductance can be alternatively expressed as:

$$g_m = 2 K (V_{GS} - V_t) = 2 K \sqrt{\frac{I_D}{K}} = 2 \sqrt{K I_D}$$

Therefore, the amplifier voltage gain is typically **proportional** to the square-root of the DC drain current:

$$A_{vo} \propto \sqrt{I_D}$$

To maximize A_{o} , maximize I_{D}

2) Maximize Voltage Swing

Recall that if the DC drain voltage V_D is biased too close to V_{DD} , then even a small small-signal drain voltage $v_d(t)$ can result in a **total** drain voltage that is too **large**, i.e.:

$$v_{D}(t) = V_{D} + v_{d}(t) \geq V_{DD}$$

In other words, the MOSFET enters **cutoff**, and the result is a **distorted** signal!

To avoid this (to allow $v_d(t)$ to be as large as possible without MOSFET entering cutoff), we need to bias our MOSFET such that the DC drain voltage V_p is as **small** as possible.

Note that the drain voltage is:

$$V_D = V_{DD} - R_D I_D$$

Therefore V_D is minimized by designing the bias circuit such that the DC drain current I_D is as large as possible.

However, we must **also** consider the signal distortion that occurs when the MOSFET enters **triod**. This of course is avoided if the total voltage drain-to-source remains greater than the excess gate voltage, i.e.:

$$\boldsymbol{v}_{DS}(t) = \boldsymbol{V}_{DS} + \boldsymbol{v}_{dS}(t) > \left(\boldsymbol{V}_{GS} - \boldsymbol{V}_{t}\right)$$

Thus, to avoid the MOSFET triode mode—and the resulting signal distortion—we need to bias our MOSFET such that the DC voltage V_{DS} is as **large** as possible.

To minimize signal distortion, maximize V_{DS}

3) Minimize Sensitivity to changes in $K_{,V_{+}}$

We find that MOSFETs are **sensitive** to temperature—specifically, the value of K is a function of temperature.

Likewise, the values of K and threshold voltage V_{r} are not particularly constant with regard to the manufacturing process.

Both of these facts lead to the requirement that our bias design be **insensitive** to the values of K and V_{τ} . Specifically, we want to design the bias network such that the DC bias current does **not** change values when K and/or V_{τ} does.

Mathematically, we can express this requirement as minimizing the value:

Similar to the BJT, we find that these derivatives are minimized by maximizing the value of **source resistor** R_s .

To minimize $d I_D/dK$, maximize R_S

So, let's **recap** what we have learned about designing our bias network:

- **1**. Make I_D as large as possible.
- 2. Make V_{DS} as large as possible.
- **3**. Make R_s as large as possible.

Again analogous to BJT biasing, we find that these three goals are conflicting, as they are constrained by the KVL equation of the bias circuit:

(1)

Resolving this conflict is a subject choice of the amplifier designer. However, here is a "rule-of-thumb" procedure.

However, verify that these results satisfy your design requirements (or the requirements assigned to you by your boss and/or professor!).

1. Given the desired value of I_D , make source voltage $V_s = V_{DD}/4$, i.e. set the source resistor R_s to:

$$\mathcal{R}_{S} = \frac{V_{S}}{I_{D}} = \frac{V_{DD}}{4I_{D}}$$

This value reduces the sensitivity $d I_D/dK$!

2. Now determine the required value of V_{GS} . Since $I_D = K(V_{GS} - V_t)^2$, we find that V_{GS} should be:

$$V_{GS} = \sqrt{\frac{I_{D}}{K} + V_{t}}$$

3. Set the required value of gate voltage V_{G} .

Note that:

$$V_G = V_{GS} + V_S$$

Thus, we can **add** the results of the previous **two** steps to find the required value of the gate voltage V_{c} . To set the gate voltage to this value, we must select the proper values of **resistors** R_1 and R_2 .

Since the gate current is **zero** $(i_{\beta} = 0)$, we find from voltage division that:

$$V_{G} = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right) = \frac{V_{DD}}{\left(\frac{R_1}{R_2} \right) + 1}$$

Note this equation determines the **ratio** of resistors R_1 and R_2 , but not the resistors themselves.

We need a **second** equation to explicitly determine the resistors values—the **sum** of the two resistances, for example.

We find that making the resistances R_1 and R_2 as **large** as possible is **very desirable**! This will typically maximize the amplifier input resistance, as well as result in minimum power dissipation.

As a result, we make the resistors as **large a practicable**. For **example**:

$$R_1 + R_2 = 250 \text{ K}$$

(3)

(2)

4. Set the required value of DC drain voltage V_D .

Recall that:

a) we require $V_D \ll V_{DD} = L_{+}$ to avoid **cutoff** mode.

(4)

b) and, we require that $V_D \gg V_G - V_t = L$ to avoid **triode** mode.

Solution: set the drain voltage V_D to a value half-way between V_{DD} and $V_G - V_t$!

In other words, set the DC drain voltage to be:

$$V_{D} = \frac{V_{DD} + (V_{G} - V_{t})}{2}$$

To achieve this, we must select the drain resistor R_{D} so that:

$$\boldsymbol{R}_{D} = \frac{\boldsymbol{V}_{DD} - \boldsymbol{V}_{D}}{\boldsymbol{I}_{D}} = \frac{\boldsymbol{V}_{DD} - (\boldsymbol{V}_{G} - \boldsymbol{V}_{t})}{2\boldsymbol{I}_{D}}$$

Thus, use equations (1), (2), (3), and (4) to determine the **standard** DC bias design (i.e., R_1 , R_2 , R_s , and R_D) for MOSFET amplifiers.

If I were you, I'd make sure I understood this material well enough that I could also bias a **non-standard** MOSFET amplifier problem.

It's not enough to simply know how, you must also know **why**!