4.5 Biasing in BJT Amplifier Circuits

Reading Assignment: 280-286

Now let's examine how we DC bias MOSFETs amplifiers!

If we don't bias properly, distortion can result!

EXAMPLE: MOSFET AMPLIFIER DISTORTION

There is a classic bias circuit for **MOSFET amplifiers**; let's see what it is!

HO: MOSFET BIASING USING A SINGLE POWER SUPPLY

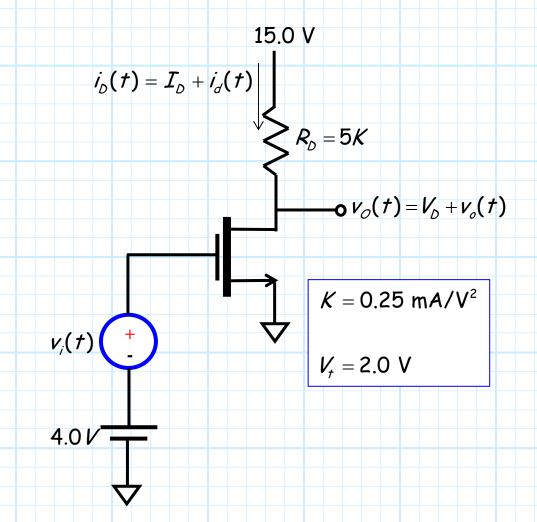
Let's do an example DC bias design.

EXAMPLE: BIASING OF DISCRETE MOSFET AMPLIFIERS

We can also use a DC current source to bias the Amplifier.

Q: Yes, but just how do we construct a current source?

A: HO: THE MOSFET CURRENT MIRROR


HO: CURRENT STEERING CIRCUITS

HO: MOSFET BIASING USING CURRENT MIRRORS

EXAMPLE: MOSFET BIASING USING CURRENT MIRRORS

<u>Example: MOSFET</u> <u>Amplifier Distortion</u>

Recall this circuit from a **previous** handout:

We found that the small-signal voltage gain is:

$$\mathcal{A}_o = \frac{v_o(t)}{v_i(t)} = -5.0$$

Say the **input** voltage to this amplifier is:

 $v_i(t) = V_i \cos \omega t$

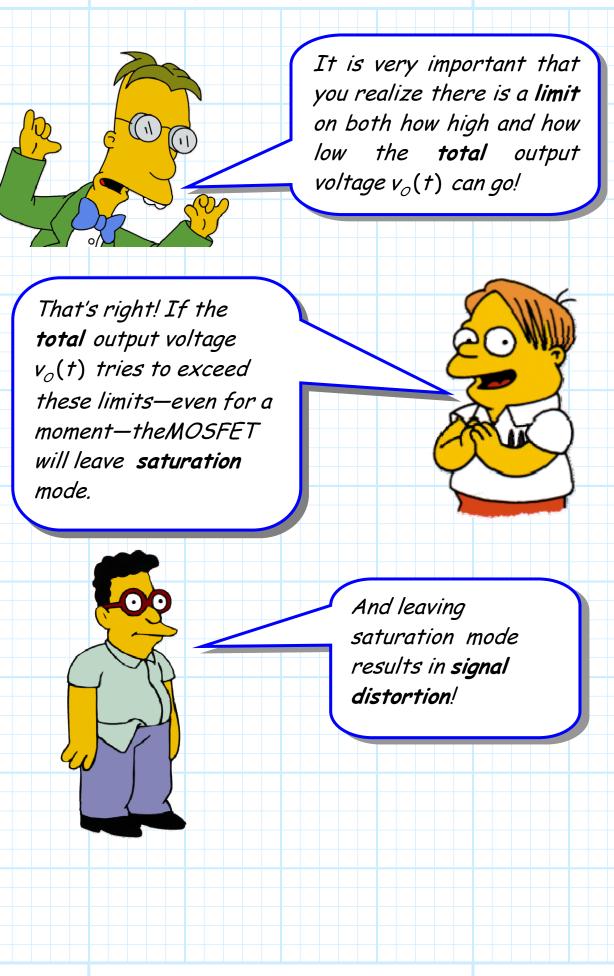
Q: What is the **largest** value that V_i can take without producing a **distorted** output?

A: Well, we know that the small-signal output is:

$$v_o(t) = A_{v_o} v_i(t)$$
$$= -5.0 V_i \cos \omega t$$

BUT, this is not the output voltage!

The **total** output voltage is the **sum** of the **small-signal** output voltage and the **DC** output voltage!


Note for this example, the **DC output** voltage is the **DC drain** voltage, and we recall we determined in an earlier handout that its value is:

$$V_{\mathcal{O}} = V_{\mathcal{D}} = 10 \text{ V}$$

Thus, the total output voltage is :

$$v_{O}(t) = V_{D} + v_{o}(t)$$

= 10.0 - 5.0 $V_{i} \cos \omega t$

3/9

Let's break the problem down into two separate problems: 1) If total output voltage $v_{\mathcal{O}}(t)$ becomes too small, the MOSFET will enter the triode mode. 2) If total output voltage $v_{\mathcal{O}}(t)$ becomes too large, the MOSFET will enter cutoff. We'll first consider problem 1. For a MOSFET to remain in saturation, $v_{D,S}(t)$ must remain greater than the excess gate voltage $(V_{GS} - V_{T})$ for all time *t*. $V_{DS}(t) > V_{GS} - V_{t}$ Since the source terminal of the MOSFET in this circuit is connected to ground, we know that $V_{s} = 0 V$. Therefore: $v_{\mathcal{D},\mathcal{S}}(t) = v_{\mathcal{D}}(t) = v_{\mathcal{O}}(t)$ and $V_{GS} = V_{G}$ And so the MOSFET will remain in saturation only if the total output voltage remains larger than $V_{GS} - V_t = V_G - V_t!$ $V_{\mathcal{O}}(t) > V_{\mathcal{C}} - V_{t}$

Thus, we conclude for this amplifier that the output "floor" is:

 $L_{-} = V_{G} - V_{t}$

And since $V_{G} = 4.0 V$ and $V_{f} = 2.0 V$, we find:

 $L_{-} = V_{G} - V_{t} = 4 - 2 = 2.0 V$

Thus, to remain in saturation, the **total** output voltage must remain larger than the "floor" voltage L_{1} for all time t:

$$V_{O}(t) > L_{-} = 2.0 V$$

Since this total voltage is:

$$v_{O}(t) = 10.0 - 5.0 V_{i} \cos \omega t$$

we can determine the **maximum** value of small-signal **input** magnitude V_i:

$$10.0 - 5.0 V_i \cos \omega t > 2.0$$

$$\Rightarrow$$
 8.0 > 5.0 V_i cos*wt*

$$\Rightarrow$$
 V_i coswt < 1.6

Since coswt can be as large as 1.0, we find that the **magnitude** of the **input** voltage can be **no larger** than 1.6 V, i.e.,

$$V_{i} < 1.6 V$$

If the **input** magnitude exceeds this value, the MOSFET will (momentarily) leave the saturation region and enter the dreaded **triode** mode!

Now let's consider problem 2

For the MOSFET to remain in saturation, the **drain** current must be **greater** than zero (i.e., $i_D > 0$). Otherwise, the MOSFET will enter **cutoff** mode.

Applying Ohm's Law to the drain resistor, we find the drain current is:

 $i_{D} = \frac{V_{DD} - v_{O}}{R_{C}} = \frac{15 - v_{O}}{5}$

it is evident that drain current is **positive** only if v_{O} < 15 V.

In other words, the **upper** limit (i.e., the "ceiling") on the **total** output voltage is:

$$L_{\!_+} = V_{\!_{DD}} = 15.0 V$$

Since:

$$v_{\mathcal{O}}(t) = 10.0 - 5.0 V_i \cos \omega t$$

we can conclude that in order for the MOSFET to remain in saturation mode:

 $10 - 5.0 V_i \cos \omega t > 15.0$

Therefore, we find:

$$V_{s}\cos \omega t > \frac{-5.0}{5.0} = -1.0$$

Since $\cos \omega t \ge -1$, the above equation means that the input signal magnitude V_i can be no larger than:

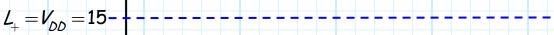
$$V_i < 1.0 \text{ V}$$

If the input magnitude **exceeds** 1.0 V, the MOSFET will (momentarily) leave the saturation and enter the **cutoff** region!

In summary:

1) If $V_i > 1.6$ V, the MOSFET will at times enter **triode**, and **distortion** will occur!

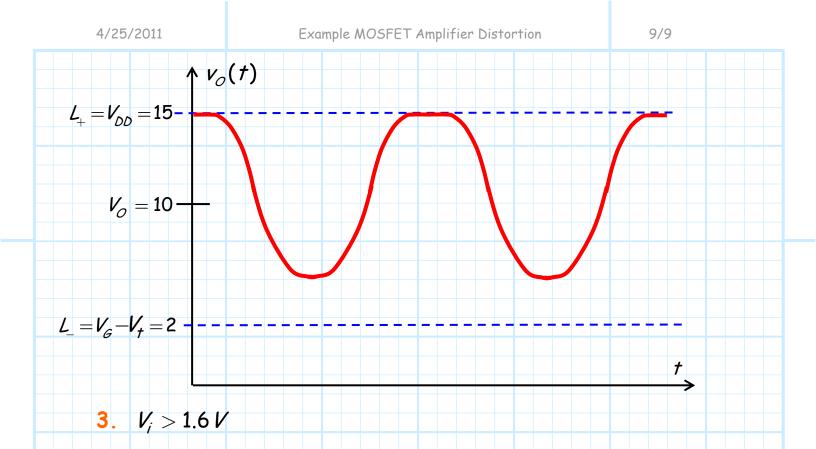
2) If $V_i > 1.0$ V, the MOSFET will at times enter **cutoff**, and **even more** distortion will occur!


†

To demonstrate this, let's consider **three** examples:

1. $V_i < 1.0 V$

The output signal in this case remains between $V_{DD} = 15.0$ and $V_G - V_f = 2.0$ V for all time t. Therefore, the output signal is not distorted.


 $\uparrow V_o(t)$

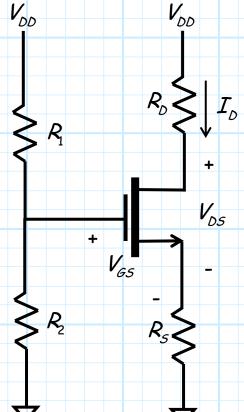
$$V_{\mathcal{O}} = 10$$

2. 1.6 V >
$$V_i$$
 > 1.0 V

The output signal in this case remains greater than $L_{-} = V_{G} - V_{f} = 2$ for all time *t*. However, the small-signal output is now large enough so that the total output voltage at times tries to **exceed** $L_{+} = V_{DD} = 15$. For these times, the MOSFET will enter **cutoff**, and the output signal will be **distorted**.

In this case, the small-signal input signal is sufficiently large so that the total output will attempt to exceed **both** limits (i.e., $V_{DD} = 15.0$ V and $V_G - V_f = 2.0$ V). Therefore, there are periods of time when the MOSFE will be in **cutoff**, and periods when the MOSFET will be in **saturation**.

$$\lambda_{+} = V_{DD} = 15$$


†

$$V_{c} = 10 -$$

$$L_{-}=V_{G}-V_{t}=2$$

<u>MOSFET Biasing using a</u> <u>Single Power Supply</u>

The general form of a **single**-supply MOSFET amplifier biasing circuit is:

Just like BJT biasing, we typically attempt to satisfy three main bias design goals:

1) Maximize Gain

Typically, the small-signal voltage gain of a MOSFET amplifier will be proportional to transconductance g_m :

$A_{vo} \propto g_m$

Thus, to maximize the amplifier voltage gain, we must **maximize** the MOSFET transconductance.

Q: What does this have to do with D.C. biasing?

A: Recall that the transconductance depends on the DC excess gate voltage:

$$g_m = 2 K \left(V_{GS} - V_{t} \right)$$

Another way to consider transconductance is to express it in terms of DC drain current I_{D} . Recall this DC current is related to the DC excess gate voltage (in satureation!) as:

$$I_{D} = K \left(V_{GS} - V_{t} \right)^{2} \implies \left(V_{GS} - V_{t} \right) = \sqrt{\frac{I_{D}}{K}}$$

And so transconductance can be alternatively expressed as:

$$g_m = 2 K (V_{GS} - V_t) = 2 K \sqrt{\frac{I_D}{K}} = 2 \sqrt{K I_D}$$

Therefore, the amplifier voltage gain is typically **proportional** to the square-root of the DC drain current:

$$A_{vo} \propto \sqrt{I_D}$$

To maximize $A_{\!\scriptscriptstyle O}$, maximize $I_{\!\scriptscriptstyle D}$

2) Maximize Voltage Swing

Recall that if the DC drain voltage V_D is biased too close to V_{DD} , then even a small small-signal drain voltage $v_d(t)$ can result in a **total** drain voltage that is too **large**, i.e.:

$$v_{D}(t) = V_{D} + v_{d}(t) \geq V_{DD}$$

In other words, the MOSFET enters **cutoff**, and the result is a **distorted** signal!

To avoid this (to allow $v_d(t)$ to be as large as possible without MOSFET entering cutoff), we need to bias our MOSFET such that the DC drain voltage V_p is as **small** as possible.

Note that the drain voltage is:

$$V_D = V_{DD} - R_D I_D$$

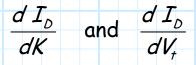
Therefore V_D is minimized by designing the bias circuit such that the DC drain current I_D is as large as possible.

However, we must **also** consider the signal distortion that occurs when the MOSFET enters **triod**. This of course is avoided if the total voltage drain-to-source remains greater than the excess gate voltage, i.e.:

$$\boldsymbol{v}_{DS}(t) = \boldsymbol{V}_{DS} + \boldsymbol{v}_{dS}(t) > \left(\boldsymbol{V}_{GS} - \boldsymbol{V}_{t}\right)$$

Thus, to avoid the MOSFET triode mode—and the resulting signal distortion—we need to bias our MOSFET such that the DC voltage V_{DS} is as **large** as possible.

To minimize signal distortion, maximize V_{DS}

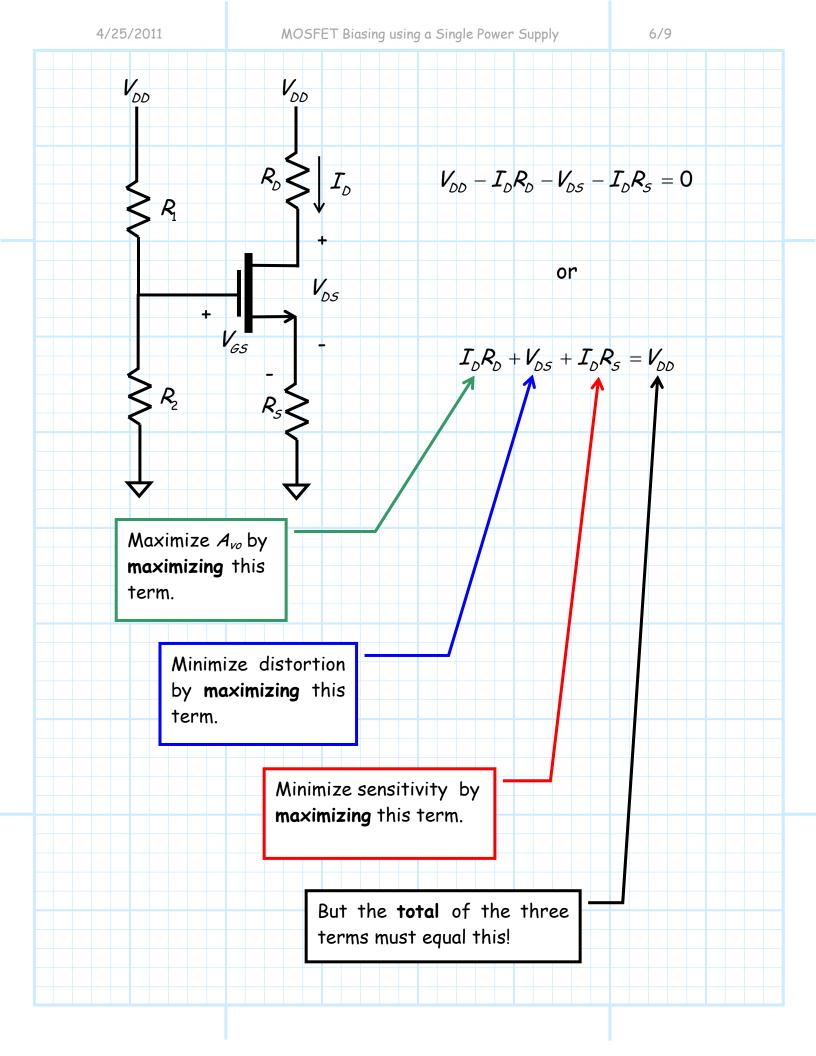

3) Minimize Sensitivity to changes in $K_{,V_{+}}$

We find that MOSFETs are sensitive to temperature—specifically, the value of K is a function of temperature.

Likewise, the values of K and threshold voltage V_{r} are not particularly constant with regard to the manufacturing process.

Both of these facts lead to the requirement that our bias design be **insensitive** to the values of K and V_{f} . Specifically, we want to design the bias network such that the DC bias current does **not** change values when K and/or V_{f} does.

Mathematically, we can express this requirement as minimizing the value:


Similar to the BJT, we find that these derivatives are minimized by maximizing the value of **source resistor** R_s .

To minimize $d I_{\rm D}/dK$, maximize $R_{\rm S}$

So, let's **recap** what we have learned about designing our bias network:

- **1**. Make I_D as large as possible.
- 2. Make V_{DS} as large as possible.
- **3**. Make R_s as large as possible.

Again analogous to BJT biasing, we find that these three goals are conflicting, as they are constrained by the KVL equation of the bias circuit:

(1)

Resolving this conflict is a subject choice of the amplifier designer. However, here is a "rule-of-thumb" procedure.

However, verify that these results satisfy your design requirements (or the requirements assigned to you by your boss and/or professor!).

1. Given the **desired value** of I_D , make source voltage $V_s = V_{DD}/4$, i.e. set the source resistor R_s to:

$$\mathcal{R}_{S} = \frac{V_{S}}{I_{D}} = \frac{V_{DD}}{4I_{D}}$$

This value reduces the sensitivity $d I_D/dK$!

2. Now determine the required value of V_{GS} . Since $I_D = K(V_{GS} - V_t)^2$, we find that V_{GS} should be:

$$V_{GS} = \sqrt{\frac{I_{D}}{K} + V_{t}}$$

3. Set the required value of gate voltage V_{G} .

Note that:

$$V_G = V_{GS} + V_S$$

Thus, we can **add** the results of the previous **two** steps to find the required value of the gate voltage V_{c} . To set the gate voltage to this value, we must select the proper values of **resistors** R_1 and R_2 .

Since the gate current is **zero** $(i_{\beta} = 0)$, we find from voltage division that:

$$V_{G} = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right) = \frac{V_{DD}}{\left(\frac{R_1}{R_2} \right) + 1}$$

Note this equation determines the **ratio** of resistors R_1 and R_2 , but not the resistors themselves.

We need a **second** equation to explicitly determine the resistors values—the **sum** of the two resistances, for example.

We find that making the resistances R_1 and R_2 as **large** as possible is **very desirable**! This will typically maximize the amplifier input resistance, as well as result in minimum power dissipation.

As a result, we make the resistors as **large a practicable**. For **example**:

$$R_1 + R_2 = 250 \text{ K}$$

(3)

(2)

4. Set the required value of DC drain voltage V_{D} .

Recall that:

a) we require $V_D \ll V_{DD} = L_{+}$ to avoid **cutoff** mode.

(4)

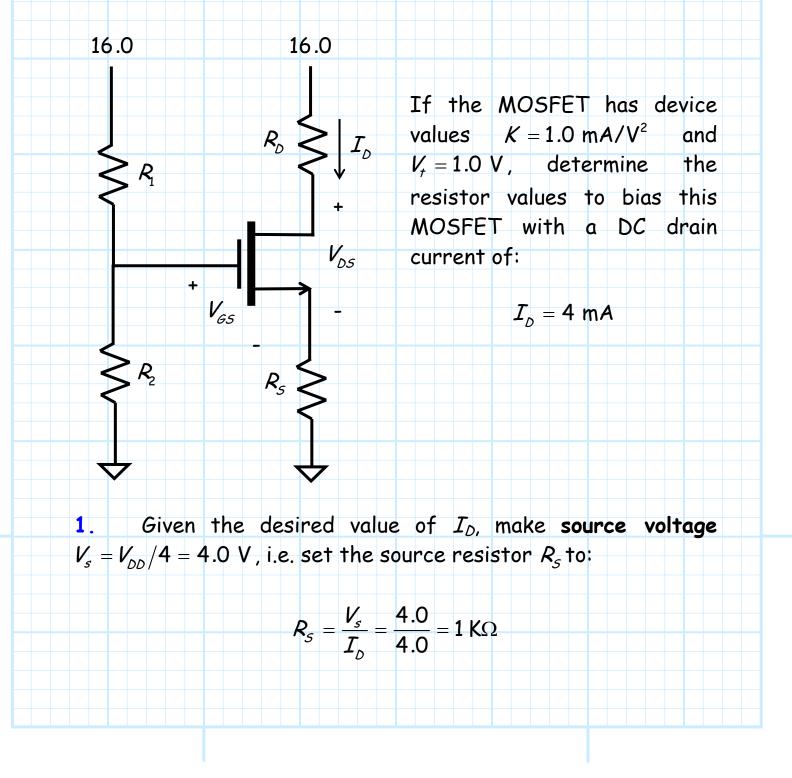
b) and, we require that $V_D \gg V_G - V_t = L$ to avoid **triode** mode.

Solution: set the drain voltage V_D to a value half-way between V_{DD} and $V_G - V_t$!

In other words, set the DC drain voltage to be:

$$V_{D} = \frac{V_{DD} + (V_{G} - V_{t})}{2}$$

To achieve this, we must select the drain resistor R_{p} so that:


$$\boldsymbol{R}_{D} = \frac{\boldsymbol{V}_{DD} - \boldsymbol{V}_{D}}{\boldsymbol{I}_{D}} = \frac{\boldsymbol{V}_{DD} - (\boldsymbol{V}_{G} - \boldsymbol{V}_{T})}{2\boldsymbol{I}_{D}}$$

Thus, use equations (1), (2), (3), and (4) to determine the **standard** DC bias design (i.e., R_1 , R_2 , R_s , and R_D) for MOSFET amplifiers.

If I were you, I'd make sure I understood this material well enough that I could also bias a **non-standard** MOSFET amplifier problem.

It's not enough to simply know how, you must also know **why**!

<u>Example: Biasing of</u> <u>Discrete MOSFET</u> <u>Amplifiers</u>

2. Now determine the required value of V_{GS} . Since $I_{D} = K(V_{GS} - V_{t})^{2}$, we find that V_{GS} should be: $V_{GS} = \sqrt{\frac{I_D}{K}} + V_{t}$ $=\sqrt{\frac{4.0}{1.0}}+1.0$ = 3.0 V 3. Set the required value of gate voltage V_{G} . $V_{G} = V_{GS} + V_{S}$ = 3.0 + 4.0= 7.0 V Since the gate current is **zero** $(i_{\mathcal{G}} = 0)$, we find from voltage division that: $V_{G} = \frac{V_{DD}}{\left(\frac{R_{I}}{R_{I}}\right) + 1}$ Therefore: $\frac{R_1}{R_2} = \frac{V_{DD}}{V_c} - 1$ $=\frac{16.0}{7.0}-1$ $=\frac{9}{7}$

We need a **second** equation to explicitly determine the resistors values—the **sum** of the two resistances, for example.

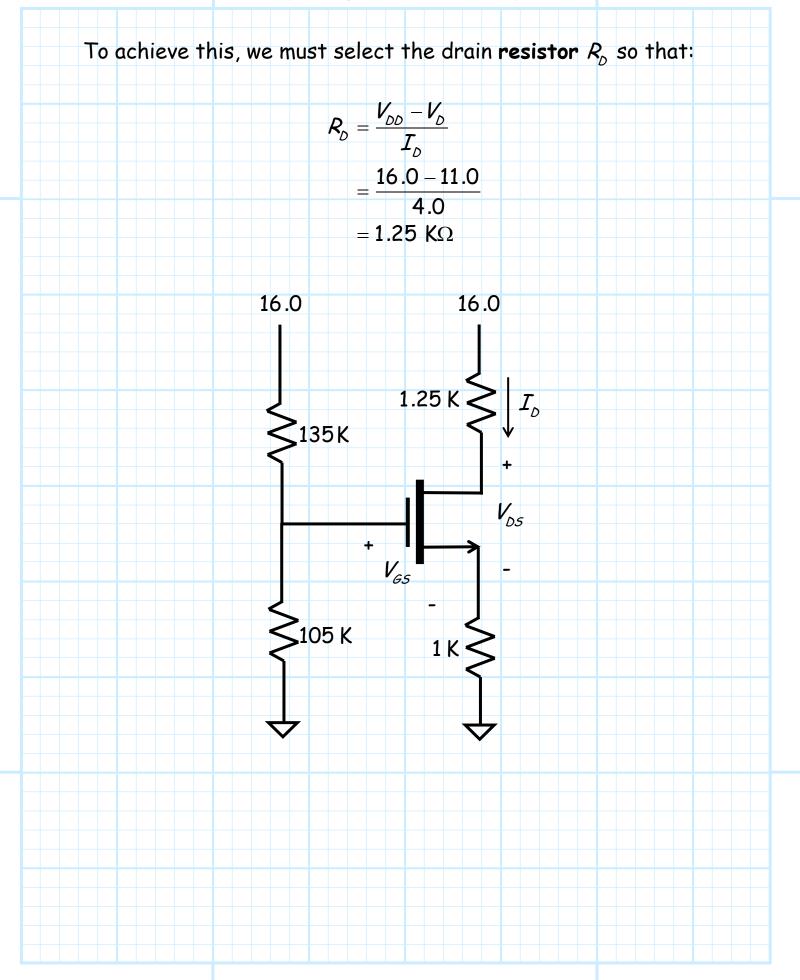
We make the resistors as large a practicable. For **example**:

$$R_1 + R_2 = 240 \text{ K}$$

Therefore:

$$\frac{9}{7}R_2 + R_2 = 240$$
$$\frac{16}{7}R_2 = 240$$

and thus:


$$R_1 = 135 \text{ K}\Omega$$
 and $R_2 = 105 \text{ K}\Omega$

4. Set the required value of DC drain voltage V_{ρ} .

Set the drain voltage V_D to a value half-way between V_{DD} and $V_G - V_f!$

In other words, set the DC drain voltage to be:

$$V_{D} = \frac{V_{DD} + (V_{G} - V_{f})}{2}$$
$$= \frac{16 + (7.0 - 1.0)}{2}$$
$$= 11.0 \text{ V}$$

<u>The MOSFET</u> <u>Current Mirror</u>

 I_{D}

 \sum_{R}

Consider the following MOSFET circuit: VDD

Note $V_D = V_G$, therefore:

$$V_{DS} = V_{GS}$$

and thus:

$$V_{DS} > V_{GS} - V_{t}$$

So, if $V_{GS} > V_{t}$, then the MOSFET is in saturation!

We know that for a MOSFET in saturation, the drain current is equal to:

$$\mathcal{I}_{D} = \mathcal{K} \left(\mathcal{V}_{GS} - \mathcal{V}_{t} \right)^{2}$$

Say we want this current I_D to be a specific value—call it I_{ref} .

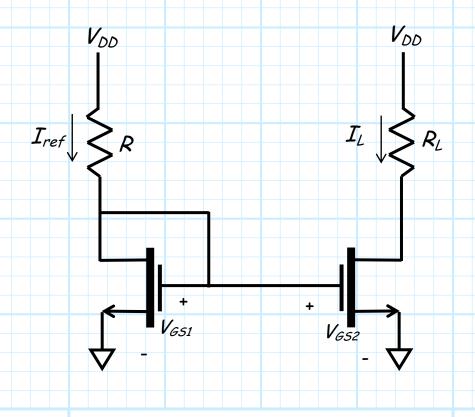
Since $V_s = 0$, we find that from the above equation, the drain voltage must be:

$$V_{D} = \sqrt{rac{I_{ref}}{K} + V_{r}}$$

Likewise, from KVL we find that:

$$I_{ref} = \frac{V_{DD} - V_{D}}{R}$$

And thus the **resistor** value to achieve the desired drain current I_{ref} is:


 $R = \frac{V_{DD} - V_{D}}{I_{ref}}$

$$V_{\mathcal{D}} = \sqrt{rac{I_{ref}}{K}} + V_{t}$$

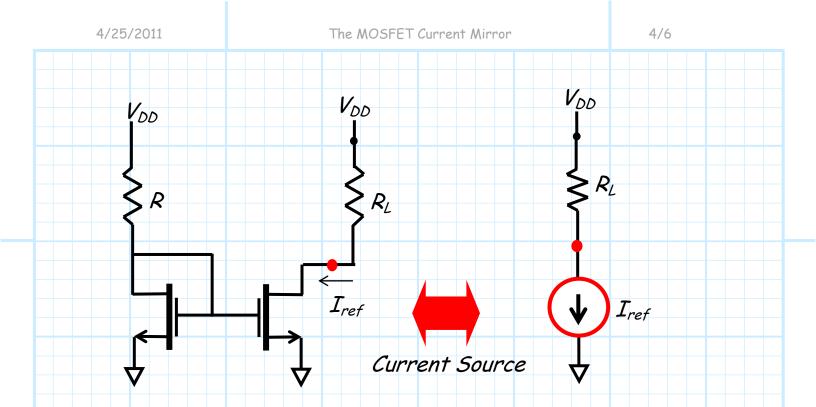
Q: Why are we doing this?

A: Say we now add another component to the circuit, with a second MOSFET that is **identical** to the first :

Q: So what is current I_L ?

A: Note that the gate voltage of each MOSFET is the same (i.e., $V_{G51} = V_{G52}$), and if the MOSFETS are the same (i.e., $K_1 = K_2$, $V_{r1} = V_{r2}$), and if the second MOSFET is likewise in saturation, its drain current I_L is:

$$I_{L} = K_{2} \left(V_{G52} - V_{t2} \right)^{2} \\
 = K_{1} \left(V_{G51} - V_{t1} \right)^{2} = I_{rep}$$


Therefore, the drain current of the **second** MOSFET is **equal** to the current of the **first**!

$$I_{ref} = I_L$$

Q: Wait a minute! You mean to say that the current through the resistor R_L is **independent** of the value of resistor R_L ?

A: Absolutely! As long as the second MOSFET is in saturation, the current through R_L is equal to I_{ref} —period.

The current through R_{L} is independent on the value of R_{L} (provided that the MOSFET remains in saturation). Think about what this means—this device is a **current source**!

Remember, the second MOSFET **must** be in saturation for the current through R_L to be a constant value I_{ref} . As a result, we find that:

$$V_{D52} > V_{G52} - V_{t2}$$

or for this example, since $V_s = 0$:

$$V_{D2} > V_{G2} - V_{t2}$$

Since $V_{D2} = V_{DD} - R_L I_{ref}$, we find that in order for the MOSFET to be in saturation:

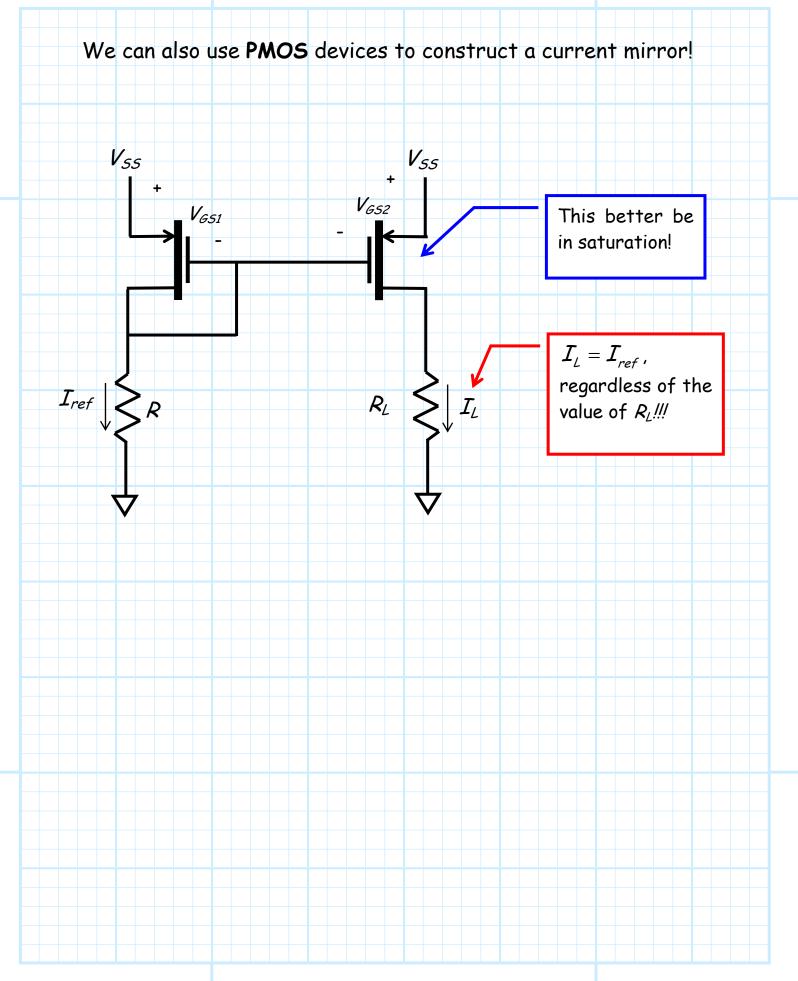
$$V_{DD} - R_L I_{ref} > V_{G2} - V_{t2} = V_{G1} - V_{t1}$$

Or, sated another way, we find that the load resistor R_L can be **no larger** than:

 $R_L < \frac{V_{DD} - V_{G1} + V_{f1}}{I_{ref}}$

Where we know that:

$$V_{G1} = V_{DD} - R I_{ref}$$


and thus we can alternatively write the above equation as:

$$R_L < R + rac{V_{r1}}{I_{ref}}$$

If the load resistor becomes larger than $R + V_{t1}/I_{ref}$, the voltage V_{DS2} will drop below the excess gate voltage $V_{GS2} - V_{t2}$, and thus the second MOSFET will enter the triode region. As a result, the drain current will not equal I_{ref} —the current source will stop working!

Although the circuit presented here is sometimes referred to as a current sink, understand that the circuit is clearly a way of designing a current source.

VDD

RŚ

Iref

Current Steering Circuits

A current mirror may consist of **many** MOSFET current sources!

VDD

 Q_2

 $R_{L1} \underbrace{}_{L1} = I_{ref} \qquad R_{L2} \underbrace{}_{L2} = I_{ref} \qquad R_{L3} \underbrace{}_{L3} = I_{ref}$

VDD

This circuit is particularly useful in integrated circuit design, where **one** resistor *R* is used to make **multiple** current sources.

Q: What if we want to make the sources have **different** current values? Do we need to make **additional** current mirrors?

A: NO!!

Recall that the current mirror simply ensures that the gate to source voltages of **each** transistor is **equal** to the gate to source voltage of the **reference**:

VDD

$$V_{GS}^{ref} = V_{GS1} = V_{GS2} = V_{GS3} = \cdots$$

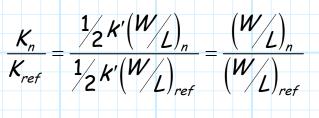
Therefore, **if** each transistor is identical (i.e., $K_{ref} = K_1 = \cdots$, and $V_t^{ref} = V_{t1} = V_{t2} = \cdots$) then:

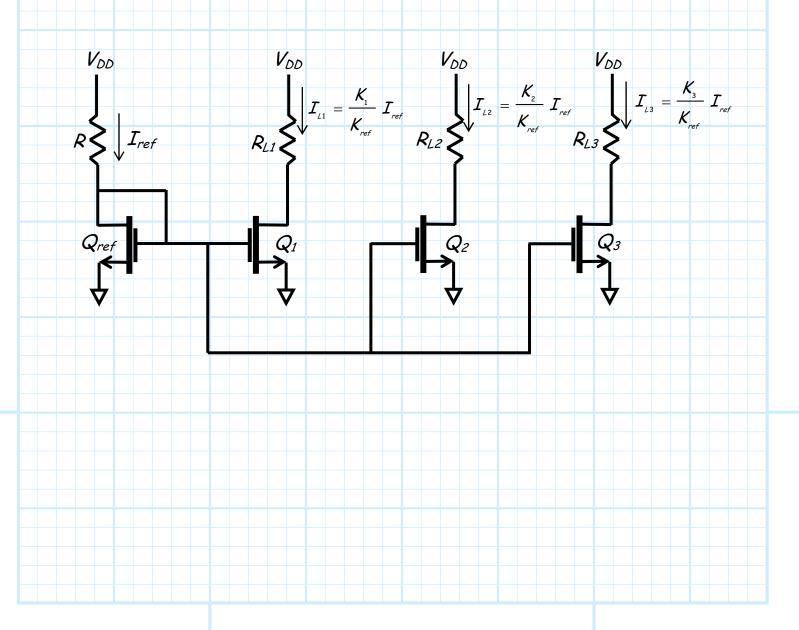
$$I_{ref} = K_{ref} \left(V_{GS}^{ref} - V_t^{ref} \right)^2$$
$$= K_n \left(V_{GSn} - V_{tn} \right)^2 = I_{Dn}$$

In other words, if each transistor Q_n is identical to Q_{ref} , then each current I_{Dn} will equal reference current I_{ref} .

But, consider what happens if the MOSFETS are not identical. Specifically, consider the case where $K_n \neq K_{ref}$ (but $V_{tn} = V_t^{ref}$).

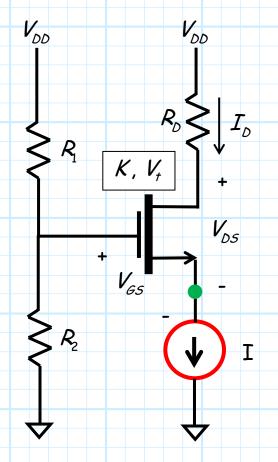
Remember, we know that $V_{GSn} = V_{GS}^{ref}$ still, even when $K_n \neq K_{ref}$. Thus, the drain current I_{Dn} will now be:


$$I_{Dn} = K_n \left(V_{GSn} - V_{tn} \right)^2$$
$$= K_n \left(V_{GS}^{ref} - V_t^{ref} \right)^2$$
$$= K_n \left(\frac{I_{ref}}{K_{ref}} \right)$$
$$= \left(\frac{K_n}{K_{ref}} \right) I_{ref}$$

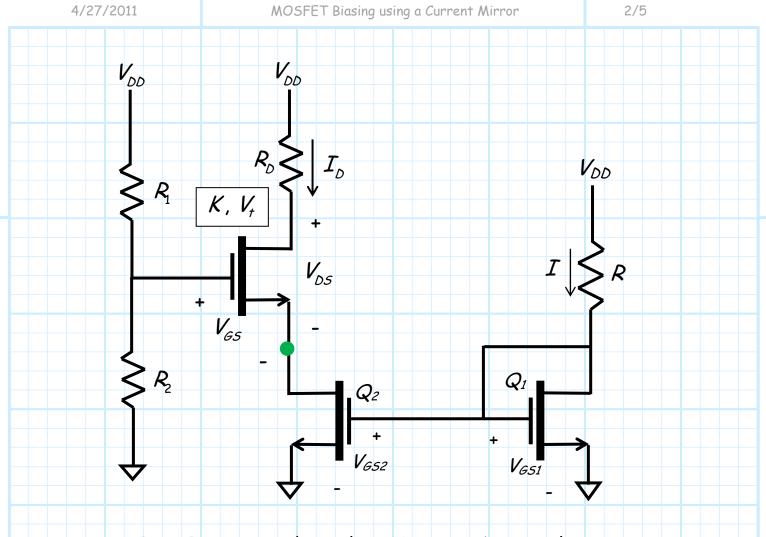

The drain current is a scaled value of I_{ref} !

3/3

For example, if K_1 is twice that of K_{ref} (i.e., $K_1 = 2K_{ref}$), then I_{D1} will be twice as large as I_{ref} (i.e., $I_1 = 2I_{ref}$).


From the standpoint of integrated circuit design, we can change the value of K by modifying the MOSFET channel width-tolength ratio (W/L) for each transistor.

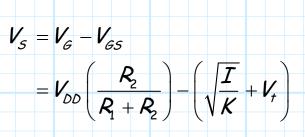
<u>MOSFET Biasing using a</u> <u>Current Mirror</u>


Just as with BJT amplifiers, we can likewise bias a MOSFET amplifier using a current source:

It is evident that the DC drain current I_D , is equal to the current source I, **regardless** of the MOSFET values K or $V_{\tau}!$

Thus, this bias design maximizes drain current **stability**!

We now know how to implement this bias design with MOSFETs—we use the **current mirror** to construct the current source!


Since $I_D = I$, it is evident that V_{GS} must be equal to:

$$V_{GS} = \sqrt{\frac{I}{K} + V_{t}}$$

and since the DC gate voltage is:

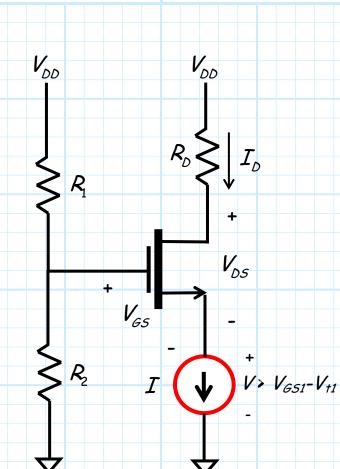
$$V_{\mathcal{G}} = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$$

It is evident that the DC source voltage V_{S} is thus:

Since we are biasing with a current source, we do **not** need to worry about drain current **stability**—the current source will determine the DC drain current for **all** conditions (i.e., $I_D = I$).

We might conclude therefore, that we should make DC source voltage V_S as small as possible. After all, this would allow us to maximize the output voltage swing (i.e., maximize $I_D R_D$ and V_{DS}).

Note however, that the source voltage V_s of the MOSFET is numerically equal to the drain voltage V_{D2} (and thus V_{D32}) of the second MOSFET of the current mirror.


Q: So what?!

A: The voltage $V_{DS2} = V_S$ must be greater than:

$$V_{GS2} - V_{t2} = V_{GS1} - V_{t1} \\ = (V_{DD} - I_{ref}R) - V_{t1}$$

in order for the second MOSFET to remain in saturation.

There is a **minimum voltage** across the current source in order for the current source to properly operate!

Thus, to maximize output swing, we **might** wish to set:

$$V_{\mathcal{S}} = V_{\mathcal{GS}1} - V_{t1}$$

(although to be practical, we should make V_s slightly greater than this to allow for some design margin).

Q: How do we "set" the DC source voltage V_s ??

A: By setting the DC gate voltage V_G !!

Recall that the DC voltage V_{GS} is determined by the DC current source value I:

$$V_{GS} = \sqrt{\frac{I}{K}} + V_{SS}$$

and the DC gate voltage is determined by the **two** resistors R_1 and R_2 :

$$V_{G} = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$$

Thus, we should **select** these resistors such that:

$$V_{G} = V_{GS} + V_{S}$$
$$= \left(\sqrt{\frac{I}{K}} + V_{t}\right) + \left(V_{GS1} - V_{t1}\right)$$

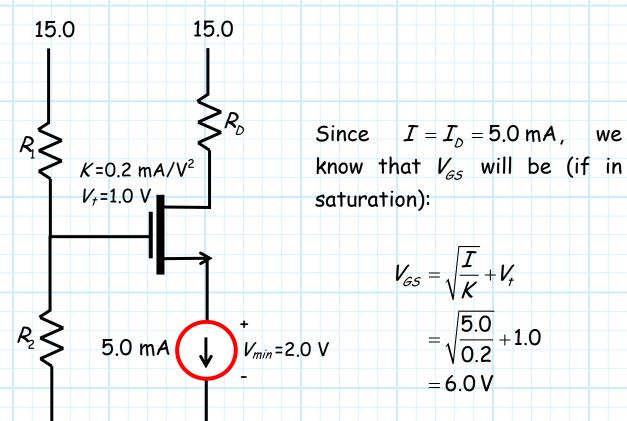
Q: So what should the value of resistor R_{D} be?

A: Recall that we should set the DC drain voltage V_D :

a) much less than V_{DD} to avoid cutoff.

b) much greater than $V_{\mathcal{G}} - V_t$ to avoid triode.

Thus, we **compromise** by setting the DC drain voltage to a point **halfway** in between!


$$V_{\mathcal{D}} = \frac{V_{\mathcal{D}\mathcal{D}} + (V_{\mathcal{G}} - V_{\tau})}{2}$$

To achieve this, we must select the drain resistor R_{D} so that:

$$\mathbf{R}_{D} = \frac{\mathbf{V}_{DD} - \mathbf{V}_{D}}{\mathbf{I}_{D}} = \frac{\mathbf{V}_{DD} - (\mathbf{V}_{G} - \mathbf{V}_{t})}{\mathbf{I}_{D}}$$

<u>Example: MOSFET Biasing</u> <u>using a Current Mirror</u>

Let's determine the proper resistor values to DC bias this MOSFET. The current source is 5.0 mA and has a minimum voltage of 2.0 Volts in order to operate properly

Assuming that we want the DC source voltage to be the minimum value of $V_s = 2.0$, we nee for the DC gate voltage to be:

 $V_{G} = V_{GS} + V_{S}$ = 6.0 + 2.0 = 8.0 V Thus, we need to select resistors R_1 and R_2 so that:

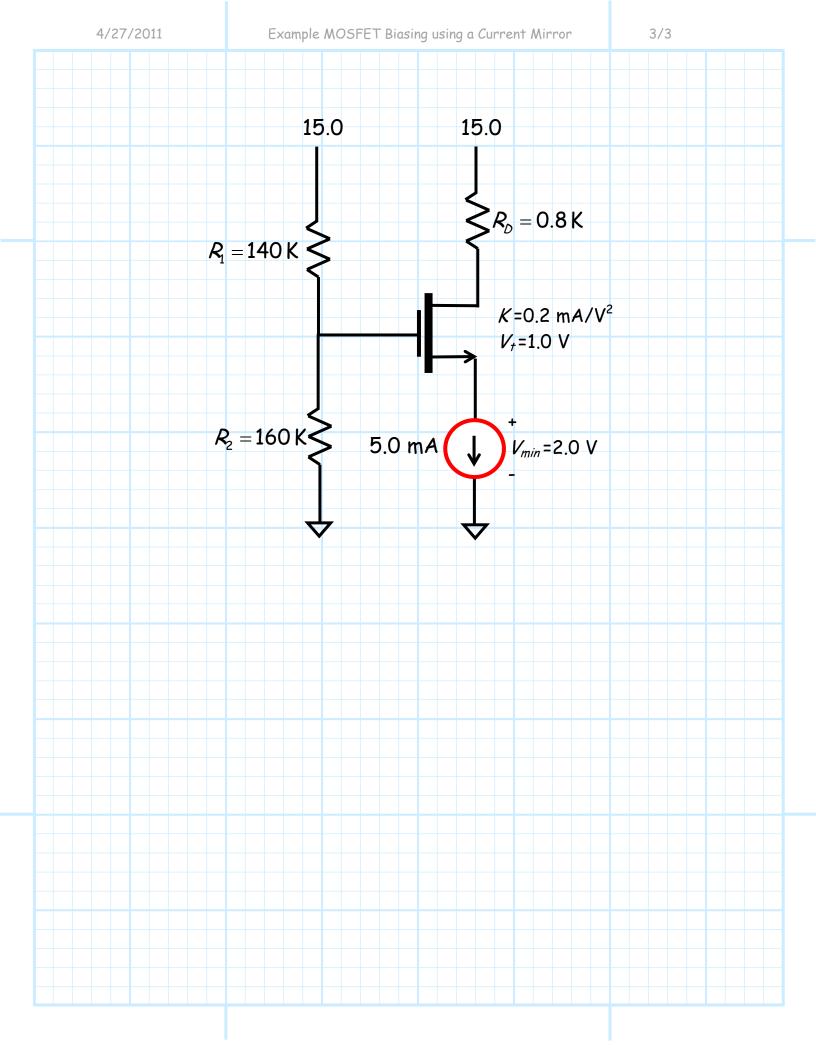
$$V_G = 8.0 = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$$

or in other words, we want:

$$\left(\frac{R_2}{R_1+R_2}\right) = \frac{8.0}{15.0}$$

Since we can make R_1 and R_2 large, let's assume that we want:

$$R_1 + R_2 = 300 \, \text{K}$$


So that $R_1 = 140 \text{ K}\Omega$ and $R_2 = 160 \text{ K}\Omega$.

Finally, we want the DC drain voltage to be:

$$V_{b} = \frac{V_{DD} + (V_{G} - V_{f})}{2}$$
$$= \frac{15.0 + (8.0 - 1.0)}{2}$$
$$= 11.0 \text{ V}$$

So that the resistor R_D is:

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}}$$
$$= \frac{15.0 - 11.0}{5.0}$$
$$= 0.8 \text{ K}\Omega$$

