Example: A Small-Signal Analysis of a MOSFET Amplifier

Let's again consider this simple NMOS Amplifier:

Step 1: DC Analysis

Turning off the small signal source leaves a DC circuit of:

We ASSUME saturation, so that we ENFORCE:

$$
I_{D}=K\left(V_{G S}-V_{f}\right)^{2}
$$

It is evident that:

$$
V_{G S}=4.0 \mathrm{~V}
$$

Therefore the $D C$ drain current is:

$$
\begin{aligned}
I_{D} & =K\left(V_{G S}-V_{t}\right)^{2} \\
& =0.25(4-2)^{2} \\
& =1.0 \mathrm{~mA}
\end{aligned}
$$

Thus, the $D C$ voltage $V_{D S}$ can be determined from KVL as:

$$
\begin{aligned}
V_{D S} & =15.0-I_{D} R_{D} \\
& =15.0-1(5) \\
& =10.0 \mathrm{~V}
\end{aligned}
$$

We CHECK our results and find:

$$
V_{G S}=4.0>V_{t}=2.0
$$

and:

$$
V_{D S}=10.0>V_{G S}-V_{t}=2.0
$$

\square
Step 2: Determine the small-signal parameters
We find that the transconductance is:

$$
\begin{aligned}
g_{m} & =2 K\left(V_{G S}-V_{t}\right) \\
& =2(0.25)(4.0-2.0) \\
& =1 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

Note that no value of λ was given, so we will assume $\lambda=0$, and thus output resistance $r_{0}=\infty$.

Steps 3 and 4: Determine the small-signal circuit

We now turn off the two DC voltage source, and replace the MOSFET with its small signal model. The result is our smallsignal circuit:

Step 5: Analyze the small-signal circuit

The analysis of this small-signal circuit is fairly straightforward. First, we note from KVL that:
and that:

$$
v_{g s}=v_{i}
$$

$$
\begin{aligned}
i_{d} & =g_{m} v_{g s} \\
& =1.0 v_{g s} \\
& =v_{g s}
\end{aligned}
$$

and that from Ohm's Law:

$$
v_{0}=-5 i_{d}
$$

Combining these equations, we find that:

$$
v_{o}=-5 v_{i}
$$

And thus the small-signal open-circuit voltage gain of this amplifier is:

$$
A_{0}=\frac{v_{o}(t)}{v_{i}(t)}=-5.0
$$

