<u>MOSFET Output</u> <u>Resistance</u>

Recall that due to channel-length modulation, the MOSFET drain current is slightly dependent on v_{DS} , and thus is more accurately described as:

$$i_{D} = K \left(v_{GS} - V_{t} \right)^{2} \left(1 + \lambda v_{DS} \right)$$

In order to determine the relationship between the small-signal voltage v_{gs} and small-signal current i_d we can apply a small-signal analysis of this equation:

$$\begin{array}{c} \begin{array}{c} \\ d \end{array} = \frac{d i_{D}}{d v_{GS}} \middle|_{v_{GS} = V_{GS}} \\ \\ = 2K \left(v_{GS} - V_{t} \right) \middle|_{v_{GS} = V_{GS}} \\ \\ = 2K \left(V_{GS} - V_{t} \right) \middle|_{v_{gS}} \\ \\ = g_{m} v_{gS} \end{array}$$

Note that we evaluated the derivative at the DC bias point V_{GS} . The result, as we expected, was the **transconductance** g_m .

We can likewise determine the relationship between small-signal voltage v_{ds} and the small-signal current i_d :

