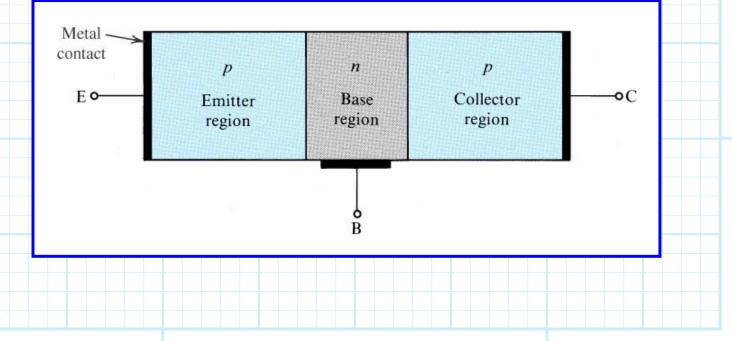

<u>BJT Structure and</u> <u>Modes of Operation</u>

First, let's start with the *npn* Bipolar Junction Transistor (BJT). As the **name** implies, the *npn* BJT is simply an hunk of *p*-type Silicon sandwiched between two slices of *n*-type material:

Each of the **three Silicon regions** has one terminal electrode connected to it, and thus the *npn* BJT is a **three terminal** device.

The three terminals are **named**: 1. Collector 2. Base 3. Emitter

Note that this npn BJT structure creates two p-n junctions !


* The junction between the *n*-type collector and the *p*type base is called the Collector-Base Junction (CBJ).

Note for the **CBJ**, the **anode** is the **base**, and the **cathode** is the **collector**.

* The junction between the *n*-type emitter and the *p*type base is called the Emitter-Base Junction (EBJ).

Note for the **EBJ**, the **anode** is the base, and the **cathode** is the emitter.

Now, we find that the *pnp* BJT is simply the **complement** of the *npn* BJT—the *n*-type silicon becomes *p*-type, and vice versa:

Thus, the *pnp* BJT **likewise** has **three** terminals (with the same names as the *npn*), as well as **two** *p-n* junctions (the CBJ and the EBJ).

* For the *pnp* BJT, the **anode** of the **CBJ** is the **collector**, and the **cathode** of the **CBJ** is the **base**.

* Likewise, the anode of the EBJ is the emitter, and the cathode of the EBJ is the base.

Note that these results are precisely **opposite** that of *npn* BJT.

Now, we know that **each** *p-n* junction (for either *npn* or *pnp*) has **three** possible **modes**:

forward biased
 reverse biased
 breakdown

We find that **breakdown** is **not** generally a useful mode for transistor operation, and so we will **avoid** that mode.

Given then that there are **two useful** *p*-*n* junction modes, and **two** *p*-*n* junctions for each BJT (i.e., CBJ and EBJ), a BJT can be in one of **four** modes!

MODE	EBJ	СВЈ
1	Reverse	Reverse
2	Forward	Reverse
3	Reverse	Forward
4	Forward	Forward
Now, let's give each of MODE	EBJ	CBJ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Reverse Active	Reverse	Forward
Saturation	Forward	Forward
We will find that the R usefulness, and thus th BJT are Cutoff, Active	ne three basic oper	
P n	B C	An Integrated Circuit BJT