Example: An Analysis of a pnp BJT Circuit

Determine the collector current and collector voltage of the BJT in the circuit below.

Thevenin's equivalent circuit:

Where $V_{\text {th }}=V_{o c}=8.0 \mathrm{~V}$ and $R_{\text {th }}=V_{o c} / I_{s c}=8 / 1=8 \mathrm{~K}$
10.0 V

Equivalent Circuit

Therefore, we can write the BJT circuit as:

Therefore,

$$
i_{B}=\frac{10.7-0.7-8.0}{2(96)+8}=\frac{2}{200}=0.01 \mathrm{~mA}
$$

and collector current i_{c} is:

$$
i_{c}=\beta i_{B}=95(0.01)=0.95 \mathrm{~mA}
$$

Likewise, the collector voltage (wry ground) V_{c} is:

$$
V_{c}=0.0+4 i_{c}=3.8 \mathrm{~V}
$$

But wait! We're not done yet! We must CHECK our assumption.
First, $i_{B}=0.01 \mathrm{~mA}>0$
But, what is $V_{E C}$??
Writing the emitter-collector KVL:

$$
10.7-2 i_{E}-V_{C E}-4 i_{C}=0
$$

Therefore,
$V_{E C}=10.7-2(96)(0.01)-4(0.95)=4.98 \mathrm{~V}>0.7 \mathrm{~V}$
Our assumption was correct !

