<u>Example: Another DC</u> <u>Analysis of a BJT Circuit</u>

Find the **collector voltages** of the two BJTs in the circuit below.

A: This seems to be a problem ! We cannot **easily** solve the emitter base KVL, as i_1 is NOT EQUAL to i_{E1} (make sure you understand this !). Instead, we find:

So, what do we do ?

1 K

β = 100

1 K

5.3 V-

 Q_1

i_{C1}

50 K

i_{B2}

 Q_2

1.0 K

First, ask the question: What do we know ??

Look closely at the circuit, it is apparent that $V_{B1} = 5.3$ V and $V_{E2} = 7.7$ V.

i_{C2}

10.0 V 7.7 V Hey! We therefore also know V_{E1} and V_{B2}:

aet:

and

$$V_{E1} = V_{B1} + V_{EB}^{1} = 5.3 + 0.7 = 6.0 V$$

$$\beta = 100$$
 $V_{B2} = V_{F2} - V_{FB}^2 = 7.7 - 0.7 = 7.0$ V

$$i_1 = \frac{10 - V_{E1}}{1} = \frac{10 - 6}{1} = 4 \text{ mA}$$

$$i_{B2} = \frac{V_{B2} - V_{E1}}{50} = \frac{7 - 6}{50} = 0.02 \text{ mA}$$

This is easy! Since we know i_1 and i_{B2} , we can **find** i_{E1} :

$$i_{E1} = i_1 + i_{B2} = 4.0 + 0.02 = 4.02 \text{ mA}$$

Since we know **one** current for each BJT, we know **all** currents for each BJT:

$$i_{c_1} = \alpha \ i_{E_1} = \frac{\beta}{\beta+1} \ i_{E_1} = \frac{100}{101} \ 4.02 = 3.98 \ mA$$

$$i_{c2} = \beta i_{B2} = 100(0.02) = 2 \text{ mA}$$

Finally, we can determine the voltages V_{c1} and V_{c2} .

$$V_{C2} = 0.0 + 1 i_{C2} = 0.0 + 1(2.0) = 2.0 V$$

Now, let's CHECK to see if our assumptions were correct:

$$i_{c2} = 2mA > 0$$
 $i_{c1} = 3.98 mA > 0$

$$V_{EC}^{1} = V_{E1} - V_{C1} = 6.0 - 3.98 = 2.02 V > 0.7 V$$

$$V_{BC}^2 = V_{B1} - V_{C1} = 7.0 - 2.0 = 5.0 V > 0 \checkmark$$

Assumptions are correct !