Example: D.C. Analysis of a BJT Circuit

Consider again this circuit from lecture:
5.7 V

Step 1 - ASSUME an operating mode.

Let's ASSUME the BJT is in the ACTIVE region!

Remember, this is just a guess; we have no way of knowing for sure what mode the BJT is in at this point.

Step 2 - ENFORCE the conditions of the assumed mode.

For active region, these are:

$$
V_{B E}=0.7 \mathrm{~V} \text { and } I_{C}=\beta I_{B}=99 I_{B}
$$

Step 3 - ANALYZE the circuit.

This is the BIG step !

Q: Where do we even start?

A: Recall what the hint sheet says:
"Write KVL equations for the base-emitter "leg"

I think we should try that!

The base-emitter KVL equation is:
$5.7-10 I_{B}-V_{B E}-2 I_{E}=0$

This is the circuit equation: note that it contains 3 unknowns (i_{B}, i_{C}, and $V_{B E}$).

$$
\begin{aligned}
V_{B E} & =0.7 \mathrm{~V} \\
I_{E} & =(\beta+1) I_{B} \\
& =100 I_{B}
\end{aligned}
$$

Look what we now have! 3 equations and 3 unknowns (this is a good thing).

Inserting the device equations into the B-E KVL:

$$
5.7-10 I_{B}-0.7-2(99+1) I_{B}=0
$$

Therefore:
$5.0-210 I_{B}=0$

Solving, we get:

$$
I_{B}=\frac{5.0}{210}=23.8 \mu \mathrm{~A}
$$

Q: Whew! That was an awful lot of work for just one current, and we still have two more currents to find.

A: No we don't! Since we determined one current for a BJT in active mode, we've determined them all!
I.E.,

$$
\begin{gathered}
I_{C}=\beta I_{B}=\underline{2.356 \mathrm{~mA}} \\
I_{E}=(\beta+1) I_{B}=\underline{2.380 \mathrm{~mA}}
\end{gathered}
$$

(Note that $\left.I_{C}+I_{B}=I_{E}\right)$

Now for the voltages!
Since we know the currents, we can find the voltages using KVL.

For example, let's determine $V_{C E}$. We can do this either by finding the voltage at the collector V_{C} (wrt ground) and voltage at the emitter V_{E} (wrt ground) and then subtracting ($\left.V_{C E}=V_{C}-V_{E}\right)$.
$O R$, we can determine $V_{C E}$ directly from the $C-E$ KVL equation.

$$
\begin{aligned}
V_{C} & =10.7-I_{C}(1) \\
& =10.7-2.36 \\
& =8.34 \mathrm{~V}
\end{aligned}
$$

and:

Therefore,
$V_{C E}=V_{C}-V_{E}=\underline{3.58 \mathrm{~V}}$

$$
\begin{aligned}
V_{E} & =0+I_{E}(2) \\
& =0+4.76 \\
& =4.76 \mathrm{~V}
\end{aligned}
$$

Note we could have likewise written the C-E KVL:

$$
10.7-I_{C}(1)-V_{C E}-I_{E}(2)=0
$$

Therefore,
$V_{C E}=10.7-I_{C}(1)-I_{E}(2)=3.58$
V

Q: So, I guess we write the collector-base KVL to find $V_{C B}$?
A: You can, but a wiser choice would be to simply apply KVL to the transistor!
I.E., $V_{C E}=V_{C B}+V_{B E}$!!

Therefore $V_{C B}=V_{C E}-V_{B E}=\underline{2.88 \mathrm{~V}}$

Q: This has been hard. I'm glad we're finished!
A: Finished! We still have 2 more steps to go!

Step 4-CHECK to see if your results are consistent with your assumption.

For active mode:

$$
\begin{aligned}
& V_{C E}=3.58 \mathrm{~V}>0.7 \mathrm{~V} \\
& I_{B}=23.8 \mu \mathrm{~A}>0.0
\end{aligned}
$$

Are assumption was correct, and therefore so are our answers !

No need to go on to Step 5 .

