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 Graphical Analysis of a BJT Amplifier

Consider again this simple BJT amplifier:
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We note that for this amplifier, the output voltage is equal to the collector-to-emitter voltage (
[image: image161.wmf]C
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).

If we apply KVL to the collector-emitter leg, we find:
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We can rearrange this to get an expression for the collector current 
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 in terms of voltage 
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Note this is an equation of a line!
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This equation is referred to as the amplifier’s load line, which we can graphically represent as:
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The load line provides the circuit relationship (via KVL) between 
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.

[image: image84.wmf]()

i

vt

 The value of 
[image: image10.wmf]C

i

 and 
[image: image11.wmf]CE

v

 must lie somewhere along the load line!

Exactly where on the load line depends on the device (BJT) relationship between 
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 and 
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.  Recall that this relationship is:
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value of 
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 must also lie somewhere along this device curve! 

Q: How can the values for 
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 and 
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simultaneously be a point on the load line, and a point on the device (BJT) curve?

A: Easy! the values for 
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lie at the point where the two curves intersect!
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Of course, the values of 
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depend on the input to the amplifier:
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As the voltage 
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changes, so will the values 
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. Note, however, that the load line will not change—the slope 
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and y-intercept 
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 are independent of voltage 
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What does change is the BJT relationship between 
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.  For example, in active mode, the collector current 
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 (we’re ignoring the Early effect)!

However, the collector current 
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of a BJT is dependent on the voltage base-to-emitter 
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.Thus, as 
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, resulting in a new BJT relationship (curve) between 
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Graphically, we can represent this as: 
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where 
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are three different input voltages such that 
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Thus, as the input voltage 
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 changes with time, the BJT 
[image: image42.wmf]C

i

 versus 
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curve will change, and its intersection with the amplifier load line will change—
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 and 
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will likewise be a function of time!

Say that the small-signal input voltage is zero (
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).  In this case, the input voltage is simply a constant bias voltage (
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).  The collector current and voltage collector-to-emitter are likewise DC bias values (
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The intersection of the two curves in this case define the operating point (bias point, Q point) of the amplifier.
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Q:  I see!  We know that a large DC collector current results in a large transconductance gm—a result that is typically required for large voltage gain.  It appears that we should make VBB (and thus IC ) as large as possible, right? 

A:  NO! There is a big problem with making the bias voltage VBB too large—BJT saturation will result !

We can graphically show this unfortunate occurrence:

[image: image93.wmf]C

i


A BJT in saturation makes a poor amplifier!

Q:  Oh I see! We need to set bias voltage VBB to be large, but not so large that we push the BJT into saturation, right?
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A:  NO!! There is a big problem with this strategy as well! 
Remember, it is the total input voltage that will determine the BJT curve.  If we DC bias the amplifier so that it is nearly in saturation, then even a small voltage 
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can “push” the BJT into saturation mode.  

For example, recall that the small signal input 
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 is an AC signal.  In other words its time averaged (i.e., DC ) value is zero, meaning that the value of 
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 will effectively be negative half of the time and positive the other half.

Say then that the magnitude of the small signal input is limited to a value 
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So that:
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and thus:
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Let’s now look at three scenarios for the small-signal input voltage 
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The resulting output voltage will of course be different for each case:
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Look what happened here! 
If the input small-signal is “large” and positive, the total input voltage ( and thus total vBE) will be too large, and thus push the BJT into saturation.

The output voltage in this case (when 
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) will simply be equal to:
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as opposed to the ideal value:
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where  
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.  Note for this amplifier, the small-signal voltage gain 
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is negative, so that the value 
[image: image65.wmf]o

v

D

 is also negative:
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Since the BJT is in saturation during some portion of 
[image: image67.wmf]()
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, the amplifier output signal will not look like the input signal—distortion will result! 

Q:  Now I get it!  We need to make VBB small, so that the BJT does not enter saturation, and the output signal is not distorted!

A:  NO!! There is a problem with this too!

We can again graphically examine what happens if we make the bias voltage VBB too small.
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Look what happened here! 
If the input small-signal is “large” and negative, the total input voltage ( and thus total vBE) will be too small, and thus push the BJT into cutoff.  Note the collector current will be zero (
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) when the BJT is in cutoff!

The output voltage in this case (i.e., when 
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) will simply be equal to:
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as opposed to the ideal value:
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where  
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.  Note for this amplifier, the small-signal voltage gain is negative, so that the value 
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 is positive.

Since the BJT is in cutoff during some portion of 
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, the amplifier output signal will not look like the input signal—distortion will result!

Q:  Yikes! Is there nothing we can do to avoid signal distortion?

A:  To get allow for the largest possible (distortion-free) output signal 
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, we typically need to bias our BJT such that we are about “half way” between biasing the BJT in saturation and biasing the BJT in cutoff.

Note if the BJT is in saturation:
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Whereas, if it is in cutoff:
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It is evident that for this particular amplifier, biasing “half-way” between saturation and cutoff means biasing such that:
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or equivalently:
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The bias solution above is optimal for this particular amplifier design.  Other amplifier designs will result in other optimal bias designs—it is up to you determine what they are.

Remember, the total voltage 
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 must be larger than 0.7 V for all time; otherwise saturation (and thus signal distortion will result).

Likewise, the total collector current 
[image: image81.wmf]()

C

it

 must be greater than zero for all time; other wise cutoff (and thus signal distortion) will result.
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