<u>D.C Biasing using a</u> <u>Single Power Supply</u>

The general form of a single-supply BJT amplifier biasing circuit is:

Just three goals

Generally, we have three goals in designing a biasing network:

1) Maximize Gain

Typically, we seek to set the operating point of the BJT amplifier such that the resulting small signal voltage gain is **maximized**.

However, we sometimes seek to set the bias point such that the **output** resistance is minimized, or the **input resistance** is maximized.

2) Maximize Voltage Swing

We seek to set the operating point of the BJT amplifier such that the maximum small signal output can a **large** as possible.

If we make V_{CE} too small, then the BJT will easily saturate, whereas if V_{CE} is too large, the BJT will easily cutoff.

This suddenly seems like a lot of goals

3) Minimize Sensitivity to changes in β

Manufacturing and temperature variances will result in significant changes in the value β .

We seek to design the bias network such that the amplifier parameters will be **insensitive** to these changes.

Q: You're kidding me right?

We're supposed to achieve **all** these goals with just **four** resistors?

A: Actually, the three design goals listed above are often in **conflict**.

We typically have to settle for a **compromise** DC bias design.

<u>How we maximize gain</u>

Let's take a closer look at each of the three design goals:

1) Maximize Gain

Typically, the small-signal voltage gain of a BJT amplifier will be proportional to transconductance g_m :

$A_{vo} \propto g_m$

Thus, to maximize the amplifier voltage gain, we must **maximize** the BJT transconductance.

Q: What does this have to do with D.C. biasing?

A: Recall that the transconductance depends on the DC collector current I_c :

Maximize that darn bias current!

Therefore the amplifier voltage gain is typically **proportional** to the DC collector current:

We of course can't decrease the thermal voltage V_7 , but we can design the bias circuit such that I_c is maximized.

 $A_{vo} \propto rac{I_{c}}{V_{ au}}$

To maximize A_{o} , maximize I_{c}

We don't want distortion!

2) Maximize Voltage Swing

Recall that if the DC collector voltage V_c is biased too close to V_{cc} , then even a small small-signal collector voltage $v_c(t)$ can result in a **total** collector voltage that is too **large**, i.e.:

$$V_{\mathcal{C}}(t) = V_{\mathcal{C}} + V_{\mathcal{C}}(t) \geq V_{\mathcal{C}}$$

In other words, the BJT enters cutoff, and the result is a distorted signal!

To avoid this (to allow $v_c(t)$ to be as large as possible without BJT entering cutoff), we need to bias our BJT such that the DC collector voltage V_c is as **small** as possible.

How to avoid cutoff

Note that the collector voltage is:

$$V_{c} = V_{cc} - R_{c} I_{c}$$

Therefore V_c is minimized by designing the bias circuit such that the DC collector current I_c is as large as possible.

A: Just a second! We must **also** consider the signal distortion that occurs when the BJT enters **saturation**.

But also avoid saturation

Saturation of course is avoided if the total voltage collector to emitter remains greater than 0.7 V, i.e.:

$$V_{CE}(t) = V_{CE} + V_{ce}(t) > 0.7 \text{ V}$$

Thus, to avoid BJT saturation—and the resulting signal distortion—we need to bias our BJT such that the DC voltage V_{CF} is as **large** as possible.

To minimize signal distortion, maximize V_{CE}

BJTs are pretty sensitive

3) Minimize Sensitivity to changes in β

We find that BJTs are very **sensitive** to temperature—specifically, the value of β is a function of temperature.

Likewise, the value of β is not particularly constant with regard to the manufacturing process.

We find that 100 otherwise "identical" BJTs will result have 100 different values of β !

Both of these facts lead to the requirement that our bias design be **insensitive** to the value of β .

Specifically, we want to design the bias network such that the DC bias currents (e.g., I_c) do **not** change values when β does.

 $\frac{d I_{c}}{d \beta}$

Mathematically, we can express this requirement as minimizing the value:

How do we determine this derivative?

Let's determine this derivative value for our standard bias network:

<u>You're always having fun</u> if you're doing calculus

If we **ASSUME** that the BJT is in active mode, then we **ENFORCE** the proper equalities and **ANALYZE** this circuit to find collector current I_c :

$$I_{C} = \frac{\beta \left(V_{BB} - 0.7 \right)}{\left(\beta + 1 \right) R_{E} + R_{B}}$$

We find therefore that:

Note then that:

Maximize that darn resistor!

In other words, if we wish to make the DC collector current **insensitive** to changes in β , we need to make:

We of course could accomplish this by making the **base resistance** $R_{B} = R_{I} || R_{2}$ small, but we will find out later that there are problems with doing this.

 $R_{\scriptscriptstyle F} \gg R_{\scriptscriptstyle B}$

Instead, we can minimize the circuit sensitivity to changes in β by maximizing the **emitter resistor** R_{E} .

To minimize $d \, I_{\mathcal{C}} / d \, \beta$, maximize $R_{\!\! E}$

Jim Stiles

What should Ic be?

Q: We have determined that the **product** $I_c R_c$ should be equal to $V_{cc}/3$.

We can of course accomplish this with a larger resistor R_c and a smaller current I_c , or a larger current I_c and a smaller resistor R_c . What should the value of I_c be?

A: Generally speaking, the value of the DC collector current I_{C} affects:

1) Voltage Gain $(g_m \to \infty \text{ as } I_c \to \infty)$.

2) Input Resistance $(r_{\pi} \rightarrow 0 \text{ as } I_{\mathcal{L}} \rightarrow \infty)$.

3) BJT Output Resistance $(r_o \rightarrow 0 \text{ as } I_c \rightarrow \infty)$.

4) Power Consumption ($P \to \infty$ as $I_{\mathcal{C}} \to \infty$).

5) Amplifier Bandwidth ($BW \rightarrow \infty$ " as $I_{\mathcal{C}} \rightarrow \infty$).

The "best" value of collector current I_c is a **trade** between these parameters.

There are two resistors left

Q: OK, we now have enough information to set I_c , V_c , and V_E , and thus resistors R_c and R_E .

But we still have **two** bias resistors left— R_1 and R_2 . How do we determine their values?

A: Well, we have found that reducing $R_{\beta} = R_1 \| R_2$ decreases the circuit sensitivity to $\beta \Rightarrow$ This is good!

But, we will find that reducing $R_{\beta} = R_1 ||R_2|$ will often decrease the amplifier input resistance $R_j \Rightarrow$ This is bad!

Also, we find that reducing $R_{B} = R_{I} ||R_{2}$ will increase the power dissipation \Rightarrow This is also **bad**!

Jim Stiles