
Example: Amplifier Distortion

Recall this circuit from a previous handout:

We found that the small-signal voltage gain is:

$$A_{vo} = \frac{v_o(t)}{v_i(t)} = -66.7$$

Say the input voltage to this amplifier is:

$$v_i(t) = V_s \cos \omega t$$

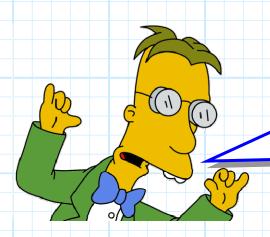
Q: What is the **largest** value that V_s can take without producing a **distorted** output?

A: Well, we know that the small-signal output is:

$$v_o(t) = A_{v_o} v_i(t)$$

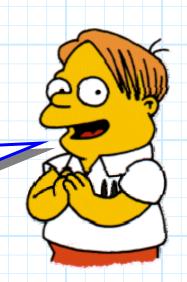
$$= -66.7 V_s \cos \omega t$$

BUT, this is not the output voltage!


The **total** output voltage is the **sum** of the **small-signal** output voltage and the **DC** output voltage!

Note for this example, the **DC output** voltage is the **DC collector** voltage, and we recall we determined in an earlier handout that its value is:

$$V_{C} = V_{C} = 10 \text{ V}$$


Thus, the total output voltage is:

$$v_{\mathcal{O}}(t) = V_{\mathcal{O}} + v_{o}(t)$$

= 10.0 - 66.7 V_{s} cos ωt

It is very important that you realize there is a **limit** on both how high and how low the **total** output voltage $v_o(t)$ can go!

That's right! If the total output voltage $v_o(t)$ tries to exceed these limits—even for a moment—the BJT will leave the active mode.

And leaving the active mode results in signal distortion!

Let's break the problem down into two separate problems:

- 1) If total output voltage $v_O(t)$ becomes too small, the BJT will enter saturation.
- 2) If total output voltage $v_O(t)$ becomes too large, the BJT will enter cutoff.

We'll first consider problem 1.

For the BJT to remain in active mode, $v_{CE}(t)$ must remain greater than 0.7 V for all time t (or equivalently $v_{CB}(t) > 0.0$).

From an earlier handout, we know that $V_E = 5.05 \, \text{V}$. The large capacitor on the emitter keeps this voltage constant with respect to time.

Therefore, the voltage $v_{CE}(t)$ will remain greater than 0.7 V only if the collector voltage $v_{C}(t)$ remains greater than 5.05 + 0.7 = 5.75 V. Note 5.75 is the base voltage V_{B} .

Of course, the collector voltage is also the output voltage $(v_{\mathcal{O}}(t) = v_{\mathcal{C}}(t))$, so that we can conclude that the **output** voltage must remain **larger** than $V_{\mathcal{B}} = 5.75$ V to remain in **active** mode:

$$5.75 < v_O(t) = 10 - 66.7V_s \cos \omega t$$

In other words, the lower limit on the total output voltage is:

$$L = 5.75 V$$

Note that we can solve this equation to determine the **maximum** value of small-signal **input** magnitude V_s :

$$5.75 < 10 - 66.7V_s \cos \omega t$$

 $66.7V_s \cos \omega t < 4.25$
 $V_s \cos \omega t < 0.064$

Since $cos \omega t$ can be as large as 1.0, we find that the magnitude of the **input** voltage can be **no larger** than 64 mV, i.e.,

$$V_{s} < 0.064 \text{ V}$$

If the input magnitude exceeds this value, the BJT will (momentarily) leave the active region and enter the saturation mode!

Now let's consider problem 2

For the BJT to remain in active mode, the collector current must be greater than zero (i.e., $i_{c} > 0$). Otherwise, the BJT will enter cutoff mode.

Applying Ohm's Law to the collector resistor, we find the collector current is:

$$i_C = \frac{V_{CC} - v_O}{R_C} = \frac{15 - v_O}{5}$$

it is evident that collector current is **positive** only if $v_{\mathcal{O}} <$ 15 V .

In other words, the upper limit on the total output voltage is:

$$L_{\perp}=15.0 V$$

Since:

$$v_{\mathcal{O}}(t) = 10 - 66.7V_{s} \cos \omega t$$

we can conclude that in order for the BJT to remain in active mode:

$$10 - 66.7V_s \cos \omega t > 15.0$$

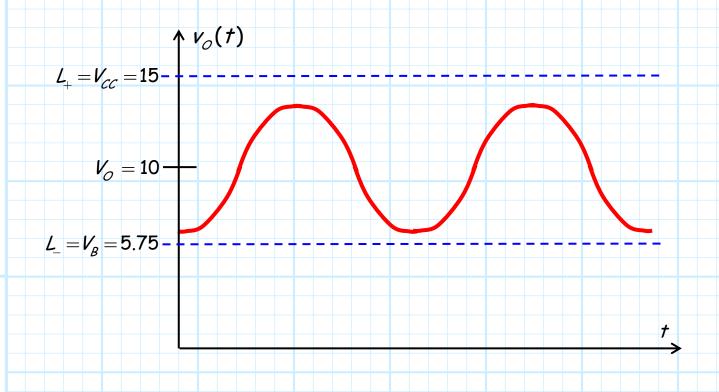
Therefore, we find:

$$V_s \cos \omega t > \frac{-5.0}{66.7} = -0.0075$$

Since $\cos \omega t \ge -1$, the above equation means that the **input** signal magnitude V_s can be **no larger** than:

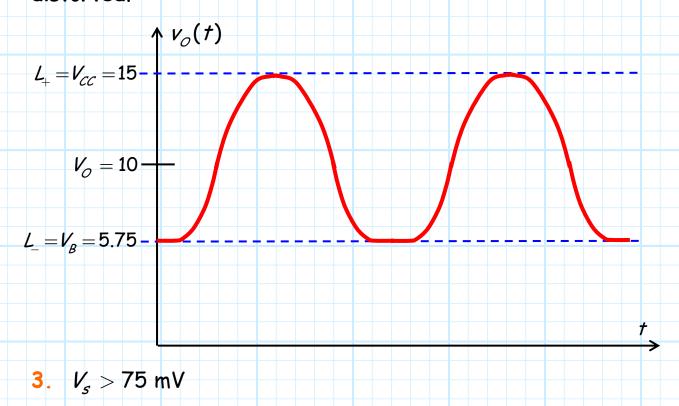
$$V_{\rm e} < 75 \, \rm mV$$

If the input magnitude exceeds 75 mV, the BJT will (momentarily) leave the active region and enter the cutoff region!

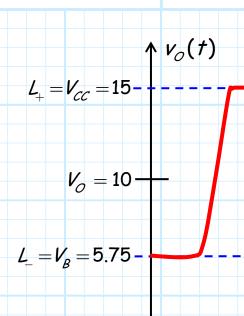

In summary:

- 1) If $V_s > 64$ mV, the BJT will at times enter saturation, and distortion will occur!
- 2) If $V_s > 75$ mV, the BJT will at times enter cutoff, and even more distortion will occur!

To demonstrate this, let's consider three examples:

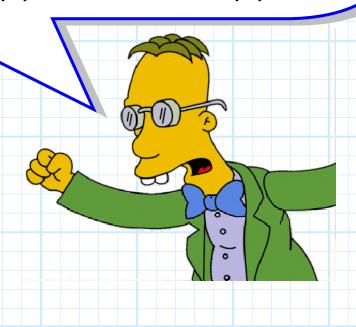

1. $V_{s} < 64 \text{ mV}$

The output signal in this case remains between $V_{cc}=15.0$ V and $V_B=5.75$ V for all time t. Therefore, the output signal is **not** distorted.



2. $64 \text{ mV} < V_s < 75 \text{ mV}$

The output signal in this case remains less than V_{cc} =15.0 V for all time t. However, the small-signal output is now large enough so that the total output voltage at times tries to drop **below** $V_B = 5.75 \text{V}$ (i.e., V_{CE} drops below 0.7 V). For these times, the BJT will enter **saturation**, and the output signal will be **distorted**.



In this case, the small-signal input signal is sufficiently large so that the total output will attempt to exceed both limits (i.e., $V_{CC}=15.0\,\mathrm{V}$ and $V_B=5.75\,\mathrm{V}$). Therefore, there are periods of time when the BJT will be in cutoff, and periods when the BJT will be in saturation.

For a given amplifier voltage gain, you must determine the largest possible input $v_i(t)$ that will produce a distortion-free output signal.

To do this, you must determine the **limits** of the **total** output voltage. There will be **two** limits—one for **saturation** (L_{-}) and one for **cutoff** (L_{+}) .

