Example: SingleSupply DC Bias

Consider this small-signal amplifier:

Say we decide that the DC collector current should be $I_{c}=5 \mathrm{~mA}$.

Let's find the resistor values for R_{1}, R_{2}, R_{C} and R_{E} that properly bias this amplifier!

Step 1: Write the DC Circuit Schematic

After all, we are designing the DC bias!

Step 2: Enforce the design goals for VE and VC
Recall that our DC bias "rule-of -thumb" was to divide the $V_{c c}$ voltage into "thirds" so that:

$$
V_{c}=2 V_{c c} / 3=10.0 \quad V
$$

Since we want $I_{c}=5 \mathrm{~mA}$, we find that the collector resistor must be:

$$
R_{c}=\frac{V_{c c}-V_{c}}{I_{c}}=\frac{15-10}{5}=1 \mathrm{~K}
$$

Likewise, the emitter resistor is:

$$
R_{E}=\frac{V_{E}}{I_{E}}=\frac{\alpha}{I_{C}} V_{E}=\frac{5.0}{5.05}=0.99 \mathrm{~K} \cong 1 \mathrm{~K}
$$

Step 3: Choose I_{1} and find R_{1} and R_{2}
Recall our "rule-of-thumb" for the current I_{1} is:

$$
0.1 I_{c}<I_{1}<I_{c}
$$

Let's pick a value in the middle, i.e.:

$$
I_{1}=0.5 I_{c}=2.5 \mathrm{~mA}
$$

Since we know that that the base voltage is approximately:

$$
V_{B} \approx 0.7+V_{E}=5.7 \mathrm{~V}
$$

and we know that the base current is:

$$
I_{B}=\frac{I_{C}}{\beta}=\frac{5.0}{100}=0.05 \mathrm{~mA}
$$

we can thus determine resistor R_{1} :
$\underbrace{}_{2} \xrightarrow{I_{B}=0.05 \mathrm{~mA}} V_{B}=5.7 \mathrm{~V}$

$$
\begin{aligned}
R_{1} & =\frac{15.0-V_{B}}{I_{1}} \\
& =\frac{15.0-5.7}{2.5} \\
& =3.72 \mathrm{~K}
\end{aligned}
$$

$$
R_{2}=\frac{V_{B}}{I_{2}}=\frac{5.7}{2.5}=2.28 \mathrm{~K}
$$

Therefore, our completed amplifier design is:

