<u>A Small-Signal</u> <u>Analysis of a BJT</u>

The collector current i_c of a BJT is related to its base-emitter voltage v_{BF} as:

One messy result

Say the current and voltage have both **D.C.** (I_{c}, V_{BE}) and small-signal (i_{c}, v_{be})

components:

and

$$i_{\mathcal{C}}(t) = I_{\mathcal{C}} + i_{\mathcal{C}}(t)$$

$$v_{BE}(t) = V_{BE} + v_{be}(t)$$

Therefore, the **total** collector current is:

$$i_{\mathcal{C}}(t) = \mathbf{I}_{S} \mathbf{e}^{\frac{V_{\mathcal{B}\mathcal{E}}(t)}{V_{T}}}$$
$$\mathbf{I}_{\mathcal{C}} + i_{\mathcal{C}}(t) = \mathbf{I}_{S} \mathbf{e}^{\frac{V_{\mathcal{B}\mathcal{E}} + V_{\mathcal{B}\mathcal{E}}(t)}{V_{T}}}$$

Apply the Small-Signal Approximation

Q: Yikes! The exponential term is very messy. Is there some way to **approximate** it?

A: Yes! The collector current i_c is a **function** of base emitter voltage v_{BE} .

Let's perform a small-signal analysis to determine an approximate relationship between i_c and v_{BE} .

Note that the value of $v_{BE}(t) = V_{BE} + v_{be}(t)$ is always very close to the D.C. voltage for all time t (since $v_{be}(t)$ is very small).

We therefore will use this D.C. voltage as the **evaluation point** (i.e., bias point) for our small-signal analysis.

How fast it grows!

We first determine the value of the collector current i_c when the base emitter voltage v_{BF} is equal to the **DC value** V_{BF} :

$$i_{\mathcal{C}}\Big|_{v_{BE}=v_{BE}} = I_{S} e^{\frac{v_{BE}}{v_{T}}}\Big|_{v_{BE}=v_{BE}} = I_{S} e^{\frac{v_{BE}}{v_{T}}} = I_{C}$$

Of course, the result is the **D.C.** collector current I_c .

We now determine the **change** in collector current due to a **change** in baseemitter voltage (i.e., a first **derivative**), **evaluated** at the D.C. voltage V_{BE} :

$$\frac{d i_{C}}{d v_{BE}}\Big|_{v_{BE}=V_{BE}} = \frac{d \left(I_{S} \exp\left[v_{BE}/V_{T}\right]\right)}{d v_{BE}}\Big|_{v_{BE}=V_{BE}}$$
$$= \frac{I_{S}}{V_{T}} e^{v_{BE}/V_{T}}\Big|_{v_{BE}=V_{BE}}$$
$$= \frac{I_{S}}{V_{T}} e^{V_{BE}/V_{T}} \left[A_{V}\right]$$

Jim Stiles

 $v_{BF} = V_{BF} + 1 \text{ mV}$

 $v_{BE} = V_{BE} + 3 \text{ mV}$

 $v_{BF} = V_{BF} - 2 \text{ mV}$

 $v_{BE} = V_{BE} - 0.5 \text{ mV}$

A simple approximation

Thus, when the base-emitter voltage is equal to the D.C. "bias" voltage V_{BE} , the collector current i_{c} will equal the D.C. "bias" current I_{c} .

Likewise, this collector current will increase (decrease) by an amount of $(I_s/V_T)e^{V_{BE}/V_T}$ mA for every 1mV increase (decrease) in V_{BE} .

Thus, we can easily **approximate** the collector current when the base-emitter voltage is equal to values such as:

Respectively, the answers are:

$$i_{c} = I_{c} + (I_{s}/V_{T}) e^{V_{BE}/V_{T}} (1) mA$$

$$i_{c} = I_{c} + (I_{s}/V_{T}) e^{V_{BE}/V_{T}} (3) mA$$

$$i_{c} = I_{c} + (I_{s}/V_{T}) e^{V_{BE}/V_{T}} (-2) mA$$

$$i_{c} = I_{c} + (I_{s}/V_{T}) e^{V_{BE}/V_{T}} (-0.5) mA$$

where we have assumed that scale current I_s is expressed in mA, and thermal voltage V_{τ} is expressed in mV.

The small signal approximation

Recall that the small-signal voltage $v_{be}(t)$ represents a small change in $v_{BE}(t)$ from its nominal (i.e., bias) voltage V_{BE} .

For example, we might find that the value of $v_{be}(t)$ at four different times t

are:

 $v_{be}(t_1) = 1 \text{ mV}$ $v_{be}(t_2) = 3 \text{ mV}$ $v_{be}(t_3) = -2 \text{ mV}$ $v_{be}(t_4) = -0.5 \text{ mV}$

Thus, we can approximate the collector current using the **small-signal approximation** as:

$$i_{\mathcal{C}}(t) = I_{\mathcal{C}} + (I_{\mathcal{S}}/V_{T})e^{V_{BE}/V_{T}} v_{be}(t)$$

where of course $I_{\mathcal{C}} = I_{\mathcal{S}} e^{V_{\mathcal{B}\mathcal{E}}/V_{\mathcal{T}}}$.

This is a very useful result, as we can now **explicitly** determine an expression for the **small-signal current** $i_c(t)$!

Jim Stiles

The small-signal collector current

Recall $i_{\mathcal{C}}(t) = I_{\mathcal{C}} + i_{\mathcal{C}}(t)$, therefore:

$$i_{\mathcal{C}}(t) = I_{\mathcal{C}} + i_{\mathcal{C}}(t) = I_{\mathcal{C}} + (I_{\mathcal{S}}/V_{\mathcal{T}})e^{V_{\mathcal{B}\mathcal{E}}/V_{\mathcal{T}}}v_{be}(t)$$

Subtracting the D.C. current from each side, we are left with an expression for the small-signal current $i_c(t)$, in terms of the small-signal voltage $v_{be}(t)$:

$$i_{c}(t) = (I_{S}/V_{T})e^{V_{BE}/V_{T}} v_{be}(t)$$

We can simplify this expression by noting that $I_{c} = I_{s}e^{V_{BE}/V_{T}}$, resulting in:

and thus:

$$i_{c}(t) = \frac{I_{c}}{V_{T}} v_{be}(t)$$

Transconductance: A small signal parameter

We define the value I_{c}/V_{T} as the transconductance g_{m} :

$$g_m = \frac{I_c}{V_T}$$
 $\begin{bmatrix} A_V \end{bmatrix}$

and thus the small-signal equation simply becomes:

$$i_c(t) = g_m v_{be}(t)$$

How transistors got their name

Let's now consider for a moment the transconductance g_m .

The term is short for transfer conductance: conductance because its units are amps/volt, and transfer because it relates the **collector** current to the voltage from **base to emitter**—the collector voltage is **not relevant** (if in **active** mode)!

Note we can rewrite the small-signal equation as:

$$\frac{v_{be}(t)}{i_c(t)} = \frac{1}{g_n}$$

The value $(1/g_m)$ can thus be considered as transfer resistance, the value describing a **transfer resistor**.

Transfer Re**sistor**—we can shorten this term to **Transistor** (this is how these devices were named)!

operating point, or the Q-point.

Jim Stiles

<u>Change the DC bias,</u>

change the transconductance

Note if we **change the D.C. bias** of a transistor circuit, the transistor operating point will change.

The small-signal model will **likewise** change, so that it provides accurate results in the region of this new operating point:

