A "Small-Signal Analysis" of Human Growth

Say the average height h of a human (in inches) is related to his/her age t in months by this equation:

$$
h(t)=65-3.66 \times 10^{-10}(45-t / 12)^{6.75} \text { inches }
$$

Say that we want to calculate the average height of a human at an age of $t=58,59,59.5,60,60.5,61$, and 62 months.

Whew! Let me get out my calculator!

$$
\begin{aligned}
& h(t=58.0)=40.48 \text { inches } \\
& h(t=59.0)=40.82 \text { inches } \\
& h(t=59.5)=40.99 \text { inches } \\
& h(t=60.0)=41.16 \text { inches } \\
& h(t=60.5)=41.32 \text { inches } \\
& h(t=61.0)=41.49 \text { inches } \\
& h(t=62.0)=41.82 \text { inches }
\end{aligned}
$$

Q: Wow, this was hard. Isn't there an easier way to calculate these values?

A: Yes, there is! We can make a "small-signal" approximation.
For a small-signal approximation, we simply need to calculate two values. First:

$$
\left.h(t)\right|_{t=60}=h(t=60)=41.16 \text { inches }
$$

In other words, the average height of a human at 60 months (i.e., 5 years) is 41.16 inches.

Likewise, we calculate the time derivative of $h(t)$, and then evaluate the result at 60 months:

$$
\begin{aligned}
\left.\frac{d h(t)}{d t}\right|_{t=60} & =\left.\left(2.059 \times 10^{-10}(45-t / 12)^{5.75}\right)\right|_{t=60} \\
& =2.059 \times 10^{-10}(45-60 / 12)^{5.75} \\
& =0.34 \text { inches } / \text { month }
\end{aligned}
$$

In other words, the average 5 year old grows at a rate of 0.34 inches/month!

Now let's again consider the earlier problem.
If we know that an average 5 -year old is 41.16 inches tall, and grows at a rate of 0.34 inches/month, then at 5 years and one month (i.e., 61 months), the little bugger will approximately be:

$$
41.16+(0.34)(1)=41.50 \text { inches }
$$

Compare this to the exact value of 41.49 inches-a very accurate approximation.

We can likewise approximate the average height of a 59-month old (i.e., 5 years minus one month):

$$
41.16+(0.34)(-1)=40.83 \text { inches }
$$

or of a 62-month old (i.e., 5 years plus two months):

$$
41.16+(0.34)(2)=41.83 \text { inches }
$$

Note again the accuracy of these approximations!
For this approximation, let us define time $t=60$ as the evaluation point, or bias point T :

$$
T \doteq \text { evaluation point }
$$

We can then define:

$$
\Delta t=t-T
$$

In this example then, $T=60$ months, and the values of Δt range from -2 to +2 months.

For example, $t=59$ months can be expressed as $t=T+\Delta t$, where $T=60$ months and $\Delta t=-1$ month.

We can therefore write our approximation as:

$$
\left.h(t) \approx h(t)\right|_{t=T}+\left.\frac{d h(t)}{d t}\right|_{t=T} \Delta t
$$

For the example where $T=60$ months we find:

$$
\begin{aligned}
h(t) & \left.\approx h(t)\right|_{t=60}+\left.\frac{d h(t)}{d t}\right|_{t=60} \Delta t \\
& =41.16+0.34 \Delta t
\end{aligned}
$$

This approximation is not accurate, however, if $|\Delta t|$ is large.
For example, we can determine from the exact equation that the average height of a forty-year old human is:

$$
h(t=480)=65 \text { inches }
$$

or about 5 feet 5 inches.

However, if we were to use our approximation to determine the average height of a 40-year old ($\Delta t=t-T=480-60=420$), we would find:

$$
\begin{aligned}
h(t) & \approx 41.16+0.34(420) \\
& =181.86 \text { inches }
\end{aligned}
$$

The approximation says that the average 40-year old human is over 15 feet tall!

Where exactly do I find these dad-gum humans?

The reason that the above approximation provides an inaccurate answer is because it is based on the assumption that humans grow at a rate of 0.34 inches/month.

This is true for 5-year olds, but not for 40-year olds (unless, of course, you are referring to their waistlines)!

We thus refer to the approximation function as a "small-signal" approximation, as it is valid only for times that are slightly different from the nominal (evaluation) time T (i.e., Δt is small).

If we wish to have an approximate function for the growth of humans who are near the age of forty, we would need to construct a new approximation:

$$
\begin{aligned}
h(t) & \left.\approx h(t)\right|_{t=480}+\left.\frac{d h(t)}{d t}\right|_{t=480} \Delta t \\
& =65.0+2.2 \times 10^{-6} \Delta t
\end{aligned}
$$

Note that forty-year old humans have stopped growing!
The mathematically astute will recognize the small-signal model as a first-order Taylor Series approximation!

