Vcc

• V0

 R_{C}

<u>BJT Amplifier Gain and</u> <u>the Active Region</u>

Consider this simple BJT circuit:

Vcc

Q: Oh, goody—you're going to **waste** my time with another of these **pointless** academic problems. Why can't you discuss a circuit that actually **does** something?

VT ·

A: Actually, this circuit is a fundamental electronic device! To see what this circuit does, plot the output voltage v_0 as a function of the input v_I . BJT in cutoff

BJT in active mode

 R_{R}

BJT in saturation

Vcc

 V_I

Vcc .

 V_I

111

Vcc

Actually, we will find that the active mode is **extremely** useful!

To see why, take the **derivative** of the above circuit's transfer function (i.e., dV_o/dV_T):

 $\frac{dV_o}{dV_T}$

Vo

We note that in **cutoff** and **saturation**:

 $\left|\frac{dV_{O}}{dV_{I}}\right|\approx 0$

 $\left|\frac{dV_{O}}{dV_{I}}\right| >> 1$

while in the active mode:

Q: I've got better things to do than listen to some egghead professor mumble about derivatives. Are these results even **remotely** important? A: Since in cutoff and saturation $dV_O/dV_I = 0$, a small change in input voltage V_I will result in almost **no change** in output voltage V_O .

Contrast this with the **active** region, where $|dV_O/dV_I| >> 1$. This means that a **small** change in **input** voltage V_I results in a **large** change in the **output** voltage V_O !

I see. A small voltage change results in a big voltage change—it's voltage gain!

The **active** mode turns out to be—**excellent**.

Whereas the important BJT regions for **digital** devices are saturation and cutoff, bipolar junction transistors in **linear** (i.e., analog) devices are typically biased to the **active** region.

This is especially true for BJT **amplifier**. Almost all of the transistors in EECS 412 will be in the **active** region—this is where we get **amplifier gain**!