Example: A Small-Signal

Analysis of a BJT

Amplifier

Consider the following BJT
15.0 V amplifier:

Let's determine its small-signal, open-circuit voltage gain:

$$
A_{0}=\frac{v_{o}(t)}{v_{i}(t)}
$$

To do this, we must follow each of our five small-signal analysis steps!

Step 1: Complete a D.C. Analysis
The $D C$ circuit that we must analyze is:

$$
15.0 \text { V }
$$

Note what we have done to the original circuit:

1) We turned off the small-signal voltage source $\left(v_{i}(t)=0\right)$, thus replacing it with a short circuit.
2) We replaced the capacitor with an open circuit-its $D C$ impedance.

Now we proceed with the DC analysis.
We ASSUME that the BJT is in active mode, and thus ENFORCE the equalities $V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\beta I_{B}$.

We now begin to ANALYZE the circuit by writing the BaseEmitter Leg KVL:
$5.8-5 I_{B}-0.7-5(\beta+1) I_{B}=0$

Therefore:

$$
I_{B}=\frac{5.1}{5+5(101)}=0.01 \mathrm{~mA}
$$

and thus:

$$
\begin{gathered}
I_{C}=\beta I_{B}=1.0 \mathrm{~mA} \\
I_{E}=I_{B}+I_{C}=1.01 \mathrm{~mA}
\end{gathered}
$$

Q: Since we know the DC bias currents, we have all the information we need to determine the small-signal parameters.

Why don't we proceed directly to step 2?

A: Because we still need to CHECK our assumption! To do this, we must determine either $V_{C E}$ or $V_{C B}$.

Note that the Collector voltage is:

$$
\begin{aligned}
V_{c} & =15-I_{c} R_{c} \\
& =15-(1.0) 5 \\
& =10.0 \mathrm{~V}
\end{aligned}
$$

And the Emitter voltage is:

Therefore, $V_{C E}$ is:

$$
\begin{aligned}
V_{C E} & =V_{C}-V_{E} \\
& =10.0-5.05 \\
& =4.95 \mathrm{~V}
\end{aligned}
$$

We now can complete our CHECK:

$$
\begin{aligned}
& I_{C}=1.0 \mathrm{~mA}>0 \\
& V_{C E}=4.95 \mathrm{~V}>0.7
\end{aligned}
$$

Time to move on to step 2!

Step 2: Calculate the small-signal circuit parameters for each BJT.

If we use the Hybrid- Π model, we need to determine g_{m} and r_{π} :

$$
\begin{gathered}
g_{m}=\frac{I_{C}}{V_{T}}=\frac{1.0 \mathrm{~mA}}{0.025 \mathrm{~V}}=40 \frac{\mathrm{~mA}}{\mathrm{~V}} \\
r_{\pi}=\frac{V_{T}}{I_{B}}=\frac{0.025 \mathrm{~V}}{0.01 \mathrm{~mA}}=2.5 \mathrm{~K}
\end{gathered}
$$

If we were to use the T-model we would likewise need to determine the emitter resistance:

$$
r_{e}=\frac{V_{T}}{I_{B}}=\frac{0.025 \mathrm{~V}}{1.01 \mathrm{~mA}}=24.7 \Omega
$$

The Early voltage V_{A} of this BJT is unknown, so we will neglect the Early effect in our analysis.

As such, we assume that the output resistance is infinite ($r_{0}=\infty$).

Step 3: Carefully replace all BJTs with their small-signal circuit model.

Step 4: Set all D.C. sources to zero.

We likewise notice that the large capacitor (COUS) is an approximate AC short, and thus we can further simplify the schematic by replacing it with a short circuit.

We can use this fact to simplify the small-signal schematic.

The schematic above is the small-signal circuit of this amplifier. We are ready to continue to step 5!

Step 5: Analyze small-signal circuit.
This is just a simple EECS 211 problem! The left side of the circuit provides the voltage divider equation:

$$
\begin{aligned}
v_{b e} & =\frac{r_{\pi}}{R_{B}+r_{\pi}} v_{i} \\
& =\frac{2.5}{5.0+2.5} v_{i} \\
& =\frac{v_{i}}{3}
\end{aligned}
$$

a result that relates the input signal to the base-emitter voltage.

The right side of the schematic allows us to determine the output voltage in terms of the base-emitter voltage:

$$
\begin{aligned}
v_{o} & =-i_{c} R_{c} \\
& =-\left(g_{m} v_{b e}\right) R_{c} \\
& =-40(5) v_{b e} \\
& =-200 v_{b e}
\end{aligned}
$$

Combining these two equations, we find:

$$
\begin{aligned}
& v_{o}=-200 v_{b e} \\
& =-200 \frac{v_{i}}{3} \\
& =-66.7 v_{i}
\end{aligned}
$$

The open-circuit, small-signal voltage gain of this amplifier gain is therefore:

$$
A_{v_{0}}=\frac{v_{0}}{v_{i}}=-66.7
$$

