Example: Small-Signal BJT

Approximations

Say that we wish to find the collector current i_{c} of a BJT biased in the active mode, with $I_{S}=10^{-12} \mathrm{~A}$ and a base-emitter voltage of:

$$
v_{B E}=0.6+0.001 \cos \omega t
$$

Q: Easy! Since:

$$
i_{c}=I_{s} e^{v_{B E} V_{T}}
$$

we find:

$$
i_{C}(t)=\left(I_{S} e^{0.6 / V_{T}}\right) e^{\left(0.001 \cos \omega t / V_{T}\right)}
$$

right?

A: Although this answer is definitely correct, it is not very useful to us as engineers. Clearly, the base-emitter voltage consists of a D.C. bias term (0.6 V) and a small-signal term (0.001 $\cos \omega t$).

Accordingly, we are interested in the D.C. collector current I_{c} and the small-signal collector current i_{c}. The D.C. collector current is obviously:

$$
\begin{aligned}
I_{C} & =I_{S} e^{0.6 / V_{T}} \\
& =10^{-12} e^{0.6 / 0.025} \\
& =26 \mathrm{~mA}
\end{aligned}
$$

But how do we determine the small-signal collector current $i_{c}(t)$ from:

$$
i_{C}(t)=\left(I_{S} e^{0.6 / /_{T}}\right) e^{\left(0.001 \cos \omega t / V_{T}\right)} ? ? ?
$$

The answer, of course, is to use the small-signal approximation.
We know that:

$$
i_{c}(t)=g_{m} v_{b e}(t)
$$

where:

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{26 m A}{25 m V}=1.06 \Omega^{-1}
$$

Therefore, the small-signal collector current is approximately:

$$
\begin{aligned}
i_{c}(t) & =g_{m} v_{b e}(t) \\
& =1.06(0.001 \cos \omega t) \\
& =1.06 \cos \omega t \quad \mathrm{~mA}
\end{aligned}
$$

and therefore the total collector current is:

Q: Say the D.C. bias voltage increases from $V_{B E}=0.6 \mathrm{~V}$ to $V_{B E}=0.7 \mathrm{~V}$. What happens to the BJT collector current?

A: The D.C. bias current becomes:

$$
I_{c}=I_{s} e^{0.7 / /_{T}}=10^{-12} e^{0.7 / 0.025}=1446 \mathrm{~mA}
$$

since the transconductance is now:

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{1446 \mathrm{~mA}}{25 \mathrm{mV}}=57.84 \Omega^{-1}
$$

the small-signal collector current is:

$$
\begin{aligned}
i_{c}(t) & =g_{m} v_{b e}(t) \\
& =57.84(0.001 \cos \omega t) \\
& =57.8 \cos \omega t \quad \mathrm{~mA}
\end{aligned}
$$

Quite an increase!

Changing the transistor operating point (i.e., the DC bias point) will typically make a big difference in the small-signal result!

