Special Problem 5.6-2

Bart has created a **new kind** of transistor for Springfield Elementary's science fair.

This transistor has three terminals, named Homer (H), Lisa (L), and Marge (M).

Bart has discovered in his lab that i_H (in **mA**) is related to v_{LM} (in **volts**) as:

$$i_{H}=3\,v_{LM}^2-2\,v_{LM}\,\,\mathrm{m}A$$

He has also discovered that i_{L} (in **mA**) is related to v_{LM} (in **volts**) as:

$$i_L = 0.2 v_{LM}^2 + 0.3 v_{LM} \text{ mA}$$

Note that Bart's transistor is **completley unrelated** to either a BJT or a MOSFET.

Say that Bart has placed a **DC bais** voltage between terminals L and M of V_{LM} = 3.0 V.

For this bias point, determine the numeric values (e.g., g_h =1.374) of small-signal parmeters g_h and r_I , that Bart has defined as:

$$g_h \doteq \frac{i_h}{v_{lm}}$$
 and $r_l \doteq \frac{v_{lm}}{i_l}$

where V_{lm} is a small-signal voltage and i_h , i_l are small-signal currents.

VLM