The Small-Signal
Circuit Equations
Now let's again consider this circuit, where we assume the BJT is in the active mode:

The four equations describing this circuit are:

1) $v_{I}-R_{B} i_{B}-v_{B E}=0 \quad(\mathrm{KVL})$
2) $i_{C}=\beta i_{B}$
(BJT)
3) $v_{0}=V_{c c}-R_{c} i_{c} \quad(\mathrm{KVL})$
4) $i_{c}=I_{s} e^{v_{B E} / V_{T}}$
(BJT)

Now, we assume that each current and voltage has both a smallsignal and DC component. Writing each equation explicitly in terms of these components, we find that the four circuit equations become:
(1)

$$
\begin{aligned}
\left(V_{I}+V_{i}\right)-R_{B}\left(I_{B}+i_{b}\right)-\left(V_{B E}+V_{b e}\right) & =0 \\
\left(V_{I}-R_{B} I_{B}-V_{B E}\right)+\left(v_{i}-R_{B} i_{b}-V_{b e}\right) & =0
\end{aligned}
$$

$$
\begin{align*}
& I_{C}+i_{c}=\beta\left(I_{B}+i_{b}\right) \tag{2}\\
& I_{C}+i_{c}=\beta I_{B}+\beta i_{b}
\end{align*}
$$

$$
\begin{align*}
& V_{o}+V_{o}=V_{c c}-R_{c}\left(I_{c}+i_{c}\right) \tag{3}\\
& V_{o}+V_{o}=\left(V_{c c}-R_{c} I_{c}\right)-R_{c} i_{c}
\end{align*}
$$

(4)

$$
\begin{aligned}
& I_{c}+i_{c}=I_{s} e^{\left(V_{B E}+V_{b c}\right) / V_{T}} \\
& I_{c}+i_{c}=I_{s} e^{V_{B E} / V_{T}} e^{V_{b e} / V_{T}}
\end{aligned}
$$

Note that each equation is really two equations!

1. The sum of the $D C$ components on one side of the equal sign must equal the sum of the DC components on the other.
2. The sum of the small-signal components on one side of the equal sign must equal the sum of the small-signal components on the other.

This result can greatly simplify our quest to determine the small-signal amplifier parameters!

From (1) we find that the $D C$ equation is:

$$
V_{I}-R_{B} I_{B}-V_{B E}=0
$$

while the small-signal equation from 1) is:

$$
v_{i}-R_{B} i_{b}-v_{b e}=0
$$

Similarly, from equation (2) we get these equations:

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{DC}
\end{equation*}
$$

$i_{c}=\beta i_{b} \quad$ (small signal)

And from equation (3):

$$
\begin{equation*}
V_{o}=V_{c c}-R_{c} I_{c} \tag{DC}
\end{equation*}
$$

$$
v_{o}=-R_{c} i_{c}
$$

(small-signal)

Finally, from equation (4) we, um, get, er-just what the heck do we get?
(4)

$$
\begin{aligned}
& I_{c}+i_{c}=I_{s} e^{\left(V_{B E}+V_{b s}\right) / V_{T}} \\
& I_{c}+i_{c}=I_{s} e^{v_{B E} / V_{T}} e^{v_{b e} / T_{T}}
\end{aligned}
$$

Q: Jeepers! Just what are the DC and small-signal components of:

$$
I_{s} e^{V_{B F} V_{T}} e^{V_{b e}} /_{T} \quad ? ? ?
$$

A: Precisely speaking, we cannot express the above expression as the sum of a DC and small-signal component. Yet, we must determine a fourth small-signal equation in order to determine the four small signal values $i_{b}, i_{c}, v_{b e}, v_{o}$!

However, we can approximate the above expression as the sum of DC and small-signal components. To accomplish this, we must apply the small-signal approximation (essentially a Taylor series approx.).

We will find that the small-signal approximation provides an accurate small-signal equation for expressions such (4). We will likewise find that this approximate equation is accurate if the small-signal voltage $v_{b e}$ is, well, small!

