BJT Internal Capacitances

C,,

 \mathcal{C}_{π}

There are **very small capacitances** in a BJT between the collector and the base, and the base and the emitter.

Since the capacitor values are very small, their impedance at **low** and moderate frequencies is large. I.E.:

 $Z_{c} = \frac{1}{j\omega C} \text{ is large if } \omega C \ll 1$

In other words, at low and moderate frequencies, these capacitor impedances are approximately **open** circuits, and thus they can be **ignored**.

However, at **high** frequencies, the capacitor impedance can drop to **moderate** values (e.g., $K\Omega s$).

In this case, we can **no longer** ignore these capacitances, but instead must incorporate them into our **small-signal model**!

 C_{μ}

The capacitance between base and collector

Q: What are C_{μ} and C_{π} ?

A: See below!

 C_{μ} is a parasitic capacitance between the **collector** and the **base**.

This capacitance is due to the *pn* junction (between collector and base).

Typical values of C_{μ} are a few picofarads or less.

 $\mathcal{C}_{''}$

 C_{π}

The capacitance between base and emitter

 \mathcal{C}_{π} is a parasitic (i.e., small) capacitance between the base and the emitter.

$$\mathcal{C}_{\pi} = \mathcal{C}_{je} + \mathcal{C}_{de}$$

where:

$$C_{de} = diffusion capacitance$$

pn junction capacitance

 \mathcal{C}_{π}

 $C_{je} =$ junction capacitance

Typically, C_{π} is a **few picofarads**.