5.8 BJT Internal Capacitances

Reading Assignment: 485-490

BJT's exhibit **capacitance** between each of its terminals (i.e., base, emitter, collector). These capacitances ultimately limit amplifier **bandwidth**.

Q: Yikes! Who put these capacitors in the BJT? Why did they put them there? Why don't we just **remove** them?

A: These capacitances are **parasitic** capacitances. Since the terminals are made of conducting materials (e.g., metal), there will **always** be some capacitance associated with any two terminals.

BJT designers and manufacturers work hard to **minimize** these capacitances—and indeed they are **very small**—but we **cannot** eliminate them entirely.

If the **signal frequency** gets **high** enough, these capacitances can affect amplifier performance.

HO: BJT INTERNAL CAPACITANCES

Now that we are aware of these internal capacitances, we must **modify** our small-signal circuit **models**.

HO: THE HIGH-FREQUENCY HYBRID PI MODEL

The significance of the internal capacitances are typically specified in terms of a frequency-dependent BJT parameter called $h_{fe}(\omega)$. This parameter is often referred to as the "short-circuit current gain" of the BJT.

From this function $h_{f_e}(\omega)$ we can extract a BJT parameter called the **unity-gain bandwidth**—a result very analogous to **op-amps**!

HO: THE SHORT-CIRCUIT CURRENT GAIN

BJT Internal Capacitances

C,,

 \mathcal{C}_{π}

There are **very small capacitances** in a BJT between the collector and the base, and the base and the emitter.

Since the capacitor values are very small, their impedance at **low** and moderate frequencies is large. I.E.:

 $Z_{\mathcal{C}} = \frac{1}{j\omega\mathcal{C}} \text{ is large if } \omega\mathcal{C} \ll 1$

In other words, at low and moderate frequencies, these capacitor impedances are approximately **open** circuits, and thus they can be **ignored**.

However, at **high** frequencies, the capacitor impedance can drop to **moderate** values (e.g., $K\Omega s$).

In this case, we can **no longer** ignore these capacitances, but instead must incorporate them into our **small-signal model**!

 C_{μ}

The capacitance between base and collector

Q: What are C_{μ} and C_{π} ?

A: See below!

 C_{μ} is a parasitic capacitance between the **collector** and the **base**.

This capacitance is due to the *pn* junction (between collector and base).

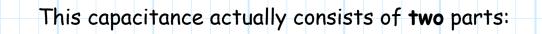
Typical values of C_{μ} are a few picofarads or less.

 $\mathcal{C}_{''}$

 C_{π}

The capacitance between base and emitter

 \mathcal{C}_{π} is a parasitic (i.e., small) capacitance between the base and the emitter.



$$\mathcal{C}_{\pi} = \mathcal{C}_{je} + \mathcal{C}_{de}$$

where:

$$C_{de} = diffusion capacitance$$

pn junction capacitance

 \mathcal{C}_{π}

 $C_{je} =$ junction capacitance

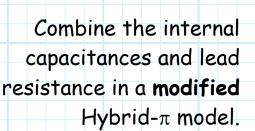
Typically, C_{π} is a **few picofarads**.

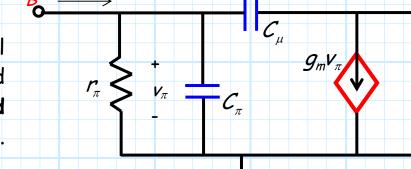
1/1

i_c(w)

Vce

<u>The High-Frequency</u> <u>Hybrid-π Model</u>





ЕÒ

- * Therefore use this model to construct small-signal circuit when v_i is operating at high frequency.
- * Note since $Z_c = 1/j\omega C$, all currents and voltages will be **dependent** on

 $i_{b}(\omega)$

- operating frequency ω .
- * Note the voltage across r_{π} is v_{π} , but $v_{\pi} \neq v_{be}$!!!

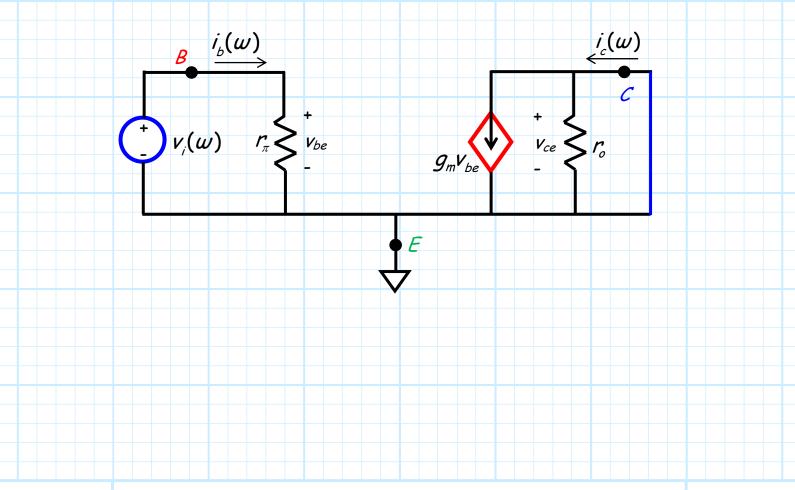
* Note at low-frequencies, the model reverts to the original Hybrid- π model.

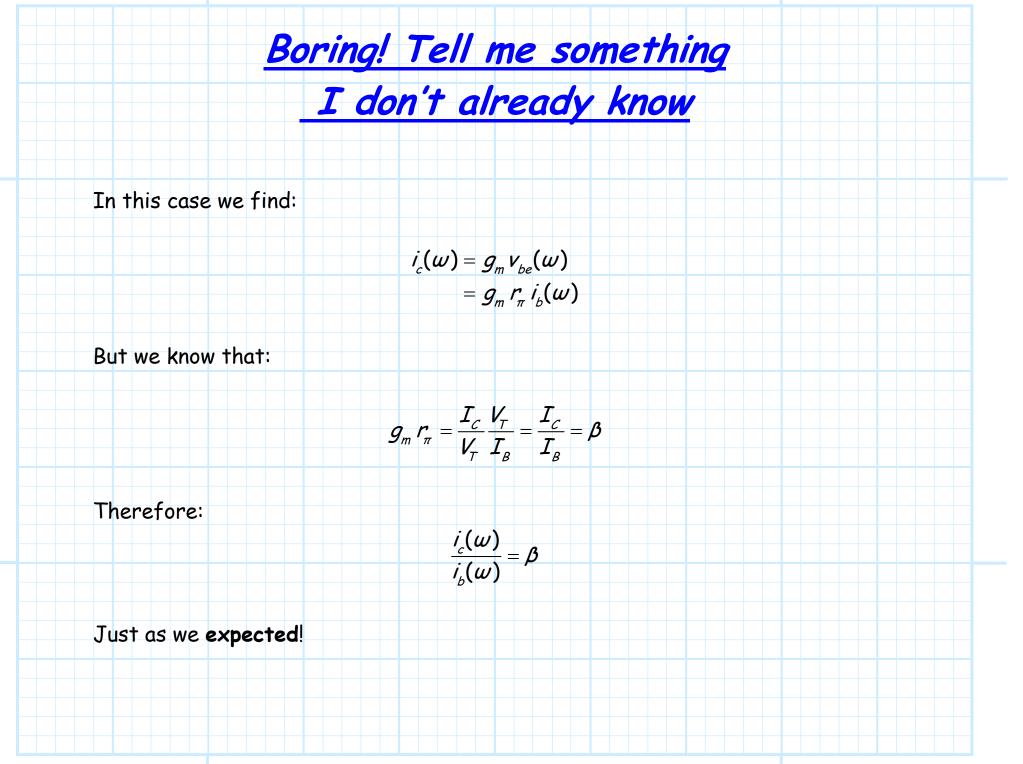
Jim Stiles

The Short-Circuit

Current Gain hfe

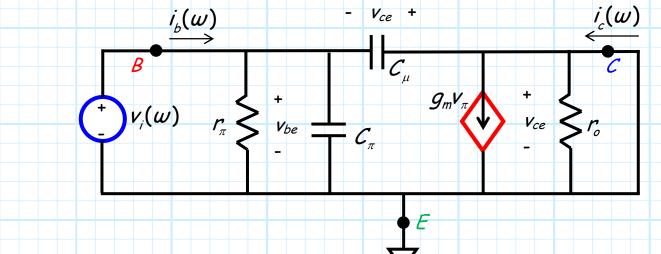
Consider the common emitter "low-frequency" small-signal model with its output short-circuited.





When the input signal is changing rapidly

Now, contrast this with the results using the **high frequency** model:



Evaluating this circuit, it is evident that the small-signal base current is:

$$i_{b}(\omega) = v_{\pi}(\omega) \left(\frac{1}{r_{\pi}} + j\omega \left(C_{\pi} + C_{\mu} \right) \right)$$

While the small-signal collector current is:

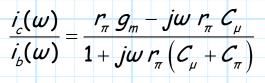
$$i_c(\omega) = v_{\pi}(\omega) (g_m - j\omega C_{\mu})$$

4/8

Here's something you did not know

Therefore, the ratio of small-signal collector current to small-signal base

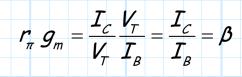
current is:



Typically, we find that $g_m \gg \omega C_u$, so that we find:

$$\frac{i_c(w)}{i_b(w)} \approx \frac{r_{\pi} g_m}{1 + jw r_{\pi} (C_{\mu} + C_{\pi})}$$

and again we know:



Therefore:

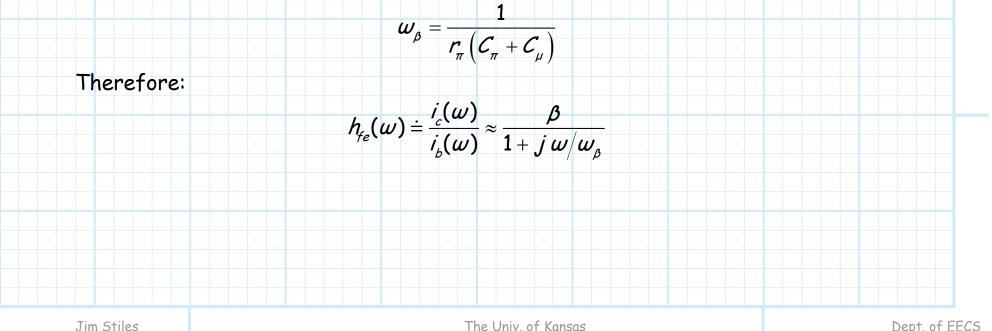
 $\frac{i_c(\omega)}{i_b(\omega)} \approx \frac{\beta}{1 + j\omega r_{\pi} (C_{\mu} + C_{\pi})}$

Your BJT is frequency dependent!

We define this ratio as the small-signal BJT (short-circuit) current gain, $h_{f_e}(\omega)$:

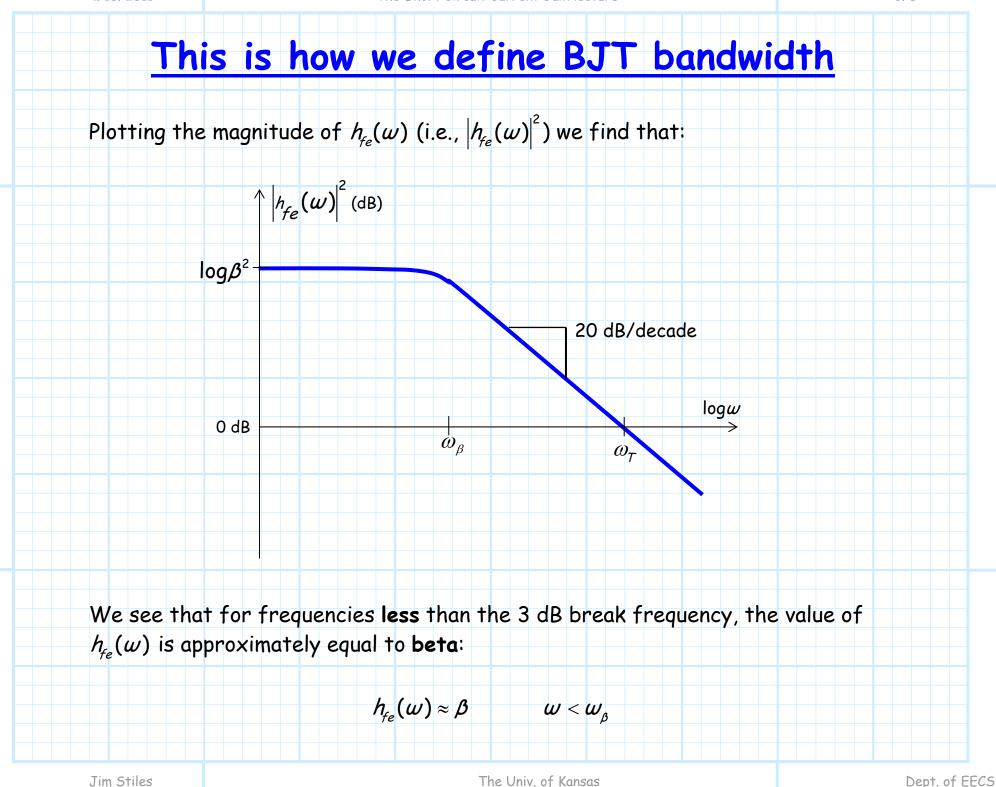
$$h_{f_e}(\omega) \doteq \frac{i_c(\omega)}{i_b(\omega)} \approx \frac{\beta}{1 + j\omega r_{\pi} \left(C_{\mu} + C_{\pi} \right)}$$

Note this function is a low-pass function, were we can define a 3dB break frequency as:



5/8

6/8



Note then for frequencies greater than this break frequency:

$$h_{f_e}(w) = \frac{\beta}{1 + j w w_{\beta}}$$
$$\approx j \frac{\beta w_{\beta}}{w} \qquad w > w_{\beta}$$

Note then that $|h_{fe}(\omega)| = 1$ when $\omega = \beta w_{\beta}$.

We can thus define this frequency as w_{τ} , the **unity-gain** frequency:

$$\omega_{\tau} \doteq \beta \omega_{\beta}$$

