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Low-Frequency Response 
 
Q: OK, I see how to determine mid-band gain, but what about 
determining amplifier bandwidth?   
 
It seems like I have no alternative but to analyze the exact 
small-signal circuit (explicitly considering all capacitances): 
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And then from the plot determine the amplifier bandwidth 
(i.e., determine Lf  and Hf )? 
 
A:  You could do all that, but there is an easier way.  
 
An amplifier frequency response ( )voA ω  (i.e., its eigen value!) 
can generally be expressed as the product of three distinct 
terms: 
 

( ) ( ) ( )vo L M HA ω F ω A F ω=  
 

The middle term is the of course the mid-band gain—a 
number that is not frequency dependent. 
 
The function ( )LF ω  describes the low-frequency response of 
the amplifier—from it we can determine the lower cutoff 
frequency Lf . 
 
Conversely, the function ( )HF ω  describes the high-frequency 
response of the amplifier—from it we can determine the 
upper cutoff frequency Hf . 
 
Q:  So just how do we determine these functions ( )LF ω  and 

( )HF ω ?? 
 
A:  The low-frequency response ( )LF ω  is dependent only on 
the large capacitors (COUS) in the amplifier circuit.  In other 
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words the parasitic capacitances have no affect on the low-
frequency response. 
 
Thus, we simply “ignore” the parasitic capacitances when 
determining ( )LF ω ! 
 
For example, say we include the COUS in our common-emitter 
example, but ignore μC  and πC .   The resulting small-signal 
circuit is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
To simplify this analysis, we first determine the Thevenin’s 
equivalent circuit of the portion of the circuit connected to 
the base.  
 
 We start by finding the open-circuit voltage: 
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And the short-circuit output current is: 
 
 
 
 
 
 
 
 
 
 
And thus the Thevenin’s equivalent source is: 
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Likewise, the two parallel elements on the emitter terminal 
can be combined: 
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Thus, the small-signal circuit is now: 
 
 
 
 
 
 
 
 
 
 
 
 
 
From KVL: 
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From Ohm’s Law: 
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Inserting the expressions for the Thevenin’s equivalent 
source, as well as ZE . 
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Now, it can be shown that:  
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Now, since we are ignoring the parasitic capacitances, the 
function ( )HF ω  that describes the high frequency response 
is: 

( ) 1HF ω =  
 

And so: 
( ) ( ) ( ) ( )vo L M H L MA ω F ω A F ω F ω A= =  

 
By inspection, we see for this example: 
 

200MA = −         We knew this already! 
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Now, let’s define: 
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Now, functions of the type: 
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are high-pass functions: 
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with a 3dB break frequency of Pω . 
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As a result, we find that the transfer function: 
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will be approximately equal to the midband gain 200MA = −  
for all frequencies ω  that are greater than both 1Pω  and 2Pω . 
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I.E.,: 
 

( ) 1 2200 if   vo M P PA ω A ω ω ω ωand≅ = − > >  
 

Hopefully, it is now apparent (please tell me it is!) that the 
lower end of the amplifier bandwidth—specified by frequency 

Lω —is the determined by the larger of the two frequencies  

1Pω  and 2Pω ! 
 

The larger of the two frequencies is called the dominant pole 
of the transfer function ( )LF ω . 
 
For our example—comparing the two frequencies 1Pω  and 2Pω : 
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it is apparent that the larger of the two (the dominant pole!) 
is likely 2Pω —that darn emitter capacitor is the key! 
 
Say we want the common-emitter amplifier in this circuit to 
have a bandwidth that extends down to 100Lf Hz=  
 
The emitter capacitor must therefore be: 
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This certainly is a Capacitor Of Unusual Size !  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 


