Low-Frequency Response

Q: OK, I see how to determine mid-band gain, but what about determining amplifier bandwidth?

It seems like I have no alternative but to analyze the exact small-signal circuit (explicitly considering all capacitances):

and then plot the magnitude:

And then from the plot determine the amplifier bandwidth (i.e., determine f_{L} and f_{H})?

A: You could do all that, but there is an easier way.
An amplifier frequency response $A_{v}(\omega)$ (i.e., its eigen value!) can generally be expressed as the product of three distinct terms:

$$
A_{o}(w)=F_{L}(w) A_{M} F_{H}(w)
$$

The middle term is the of course the mid-band gain-a number that is not frequency dependent.

The function $F_{L}(\omega)$ describes the low-frequency response of the amplifier-from it we can determine the lower cutoff frequency f_{L}.

Conversely, the function $F_{H}(\omega)$ describes the high-frequency response of the amplifier-from it we can determine the upper cutoff frequency f_{H}.

Q: So just how do we determine these functions $F_{L}(w)$ and $F_{H}(\omega) ? ?$

A: The low-frequency response $F_{L}(\omega)$ is dependent only on the large capacitors (COUS) in the amplifier circuit. In other
words the parasitic capacitances have no affect on the lowfrequency response.

Thus, we simply "ignore" the parasitic capacitances when determining $F_{L}(\boldsymbol{w})$!

For example, say we include the COUS in our common-emitter example, but ignore C_{μ} and C_{π}. The resulting small-signal circuit is:

To simplify this analysis, we first determine the Thevenin's equivalent circuit of the portion of the circuit connected to the base.

We start by finding the open-circuit voltage:

$$
\begin{aligned}
& \|^{\frac{1}{j \omega c_{i}}} \longrightarrow v_{0}^{o c}(\omega) \\
& \dagger 0.37 \mathrm{~K}<\quad v_{o}^{o c}(\omega) \\
& \begin{aligned}
V_{o}^{o c}(\omega) & =V_{i}(\omega)\left(\frac{0.37}{0.37+\frac{1}{j \omega c_{i}}}\right) \\
& =V_{i}(\omega)\left(\frac{j \omega(0.37) C_{i}}{1+j \omega(0.37) C_{i}}\right)
\end{aligned}
\end{aligned}
$$

And the short-circuit output current is:

And thus the Thevenin's equivalent source is:

$$
\begin{aligned}
Z_{\text {th }}(\omega) & =\frac{V_{o}^{o c}(\omega)}{I_{0}^{s c}(\omega)} \\
& =\left(\frac{j \omega(0.37) C_{i}}{1+j \omega(0.37) C_{i}}\right)\left(\frac{1}{j \omega C_{i}}\right) \\
& =\frac{(0.37)}{1+j \omega(0.37) C_{i}}
\end{aligned}
$$

Likewise, the two parallel elements on the emitter terminal can be combined:

$$
Z_{E}(\omega)=\frac{\frac{1}{j \omega c_{E}}}{1+\frac{1}{j \omega c_{E}}}=\frac{1}{1+j \omega C_{E}}
$$

Thus, the small-signal circuit is now:

From KVL:

$$
\begin{aligned}
& 0+V_{\text {th }}-I_{b}\left(Z_{\text {th }}+0.5\right)-(\beta+1) I_{b} Z_{E}=0 \\
& \Rightarrow \quad I_{b}=\frac{V_{\text {th }}}{Z_{t h}+0.5+101 Z_{E}}
\end{aligned}
$$

From Ohm's Law:

$$
V_{b e}=0.5 I_{b}
$$

Therefore:

$$
\begin{aligned}
V_{0}(\omega) & =-200 V_{b e}(1) \\
& =-200(0.5) \frac{V_{t h}(\omega)}{Z_{t h}+0.5+101 Z_{E}} \\
& =V_{t h}(\omega)\left(\frac{-100}{Z_{t h}+0.5+101 Z_{E}}\right)
\end{aligned}
$$

Inserting the expressions for the Thevenin's equivalent source, as well as Z_{E}.

$$
\left.\begin{array}{rl}
V_{0}(\omega) & =V_{t h}(\omega)\left(\frac{-100}{Z_{t h}+0.5+101 Z_{E}}\right) \\
& =V_{i}(\omega)\left(\frac{j \omega(0.37) C_{i}}{1+j \omega(0.37) C_{i}}\right)\left(\frac{2(0.37)}{1+j \omega(0.37) C_{i}}+1+\frac{202}{1+j \omega C_{E}}\right.
\end{array}\right)
$$

Now, it can be shown that:

$$
\frac{1}{\frac{2(0.37)}{1+j \omega(0.37) C_{i}}+1+\frac{202}{1+j \omega C_{E}}} \cong \frac{j \omega\left(C_{E} / 203\right)}{1+j \omega\left(C_{E} / 203\right)}
$$

Therefore:

$$
V_{0}(\omega)=V_{i}(\omega)\left(\frac{j \omega(0.37) C_{i}}{1+j \omega(0.37) C_{i}}\right)\left(\frac{j \omega\left(C_{E} / 203\right)}{1+j \omega\left(C_{E} / 203\right)}\right)(-200)
$$

And so:

$$
A_{0}(\omega)=\left(\frac{j \omega(0.37) C_{i}}{1+j \omega(0.37) C_{i}}\right)\left(\frac{j \omega\left(C_{E} / 203\right)}{1+j \omega\left(C_{E} / 203\right)}\right)(-200)
$$

Now, since we are ignoring the parasitic capacitances, the function $F_{H}(w)$ that describes the high frequency response is:

$$
F_{H}(w)=1
$$

And so:

$$
A_{0}(\omega)=F_{L}(\omega) A_{M} F_{H}(\omega)=F_{L}(\omega) A_{M}
$$

By inspection, we see for this example:

$$
A_{M}=-200 \leftarrow \text { We knew this already! }
$$

And:

$$
F_{L}(\omega)=\left(\frac{j \omega(0.37) C_{i}}{1+j \omega(0.37) C_{i}}\right)\left(\frac{j \omega\left(C_{E} / 203\right)}{1+j \omega\left(C_{E} / 203\right)}\right)
$$

Now, let's define:

$$
\omega_{P 1}=\frac{1}{0.37 C_{i}}=\frac{2.7}{C_{i}} \quad \text { and } \quad \omega_{P 2}=\frac{203}{C_{E}}
$$

Thus,

$$
F_{L}(\omega)=\left(\frac{j\left(\omega / \omega_{P_{1}}\right)}{1+j\left(\omega / \omega_{P_{1}}\right)}\right)\left(\frac{j\left(\omega / \omega_{P_{2}}\right)}{1+j\left(\omega / \omega_{P_{2}}\right)}\right)
$$

Now, functions of the type:

$$
\left(\frac{j\left(\omega / \omega_{\rho}\right)}{1+j\left(\omega / \omega_{\rho}\right)}\right)
$$

are high-pass functions:

$$
\left|\frac{j\left(\omega / \omega_{p}\right)}{1+j\left(\omega / \omega_{p}\right)}\right|^{2}=\frac{\left(\omega / \omega_{p}\right)^{2}}{1+\left(\omega / \omega_{p}\right)^{2}}
$$

with a 3 dB break frequency of ω_{ρ}.
$\uparrow \frac{\left(\omega / \omega_{P}\right)^{2}}{1+\left(\omega / \omega_{\rho}\right)^{2}} \quad[d B]$

Thus:

$$
\frac{\left(\omega / \omega_{\rho}\right)^{2}}{1+\left(\omega / \omega_{p}\right)^{2}}= \begin{cases}\cong 1.0 & \text { for } \omega>\omega_{\rho} \\ 0.5 & \text { for } \omega=\omega_{\rho} \\ 0 & \text { for } \omega=0\end{cases}
$$

As a result, we find that the transfer function:

$$
\begin{aligned}
A_{o}(\omega) & =F_{L}(\omega) A_{M} \\
& =\left(\frac{j\left(\omega / \omega_{P_{1}}\right)}{1+j\left(\omega / \omega_{P_{1}}\right)}\right)\left(\frac{j\left(\omega / \omega_{P_{2}}\right)}{1+j\left(\omega / \omega_{P_{2}}\right)}\right)(-200)
\end{aligned}
$$

will be approximately equal to the midband gain $A_{M}=-200$ for all frequencies ω that are greater than both $\omega_{\rho_{1}}$ and $\omega_{\rho_{2}}$.
I.E.,:

$$
A_{o}(\omega) \cong A_{M}=-200 \quad \text { if } \omega>\omega_{P_{1}} \text { and } \omega>\omega_{P_{2}}
$$

Hopefully, it is now apparent (please tell me it is!) that the lower end of the amplifier bandwidth-specified by frequency ω_{L}-is the determined by the larger of the two frequencies $\omega_{\rho_{1}}$ and $\omega_{\rho_{2}}$!

The larger of the two frequencies is called the dominant pole of the transfer function $F_{L}(\omega)$.

For our example-comparing the two frequencies $\omega_{\rho_{1}}$ and $\omega_{\rho_{2}}$:

$$
\omega_{P_{1}}=\frac{1}{0.37 C_{i}}=\frac{2.7}{C_{i}} \quad \text { and } \quad \omega_{P 2}=\frac{203}{C_{E}}
$$

it is apparent that the larger of the two (the dominant pole!) is likely $\omega_{\rho_{2}}$-that darn emitter capacitor is the key!

Say we want the common-emitter amplifier in this circuit to have a bandwidth that extends down to $f_{L}=100 \mathrm{~Hz}$

The emitter capacitor must therefore be:

$$
\begin{align*}
& 2 \pi f_{L}>\omega_{P 2}=\frac{203}{C_{E}} \\
& \Rightarrow C_{E}>\frac{203}{2 \pi f_{L}}=\frac{203}{2 \pi(1000)}=32,300 \mu F
\end{align*}
$$

This certainly is a Capacitor Of Unusual Size!

