## <u>The Common Source Amp</u> with a Current Source



A: Remember, every real current source (as with every voltage source) has a source resistance  $r_o$ . A more accurate current source model is therefore:

Ι

**Ideally**,  $r_o = \infty$ . However, for good current sources, this output resistance is large (e.g.,  $r_o = 100 \ K\Omega$ ). Thus, we mostly **ignore** this value (i.e., approximate it as  $r_o = \infty$ ), but there are some circuits where this resistance makes quite a **difference**.

This is one of those circuits!

Therefore, a more **accurate** amplifier circuit schematic is:



$$-\mathbf{0}v_{O}(t)$$

$$v_i(t)$$
 +



mirror. What is the output resistance ro of a current mirror?

A: Implementing a **PMOS** current mirror, we find that our amplifier circuit:



**Q:** Yikes! Where did all those **transistors** come from? What is it that they **do**?

A: Transistors  $Q_2$ ,  $Q_3$ , and  $Q_4$  form the current mirror that acts as the current source. Note that transistor  $Q_4$  is an enhancement load—it acts as the resistor in the current mirror circuit.

Note this amplifier circuit is **entirely** made of NMOS and PMOS **transistors**—we can "easily" implement this amplifier as an **integrated circuit**!

**Q:** So again, what **is** the source resistance  $r_o$  of this current source?

A: Let's determine the small-signal circuit for this integrated circuit amplifier and find out!

**Q:** But there are **four** (count em') transistors in this circuit, determining the small-signal circuit must **take forever**!

A: Actually no.

The important thing to realize when analyzing **this** circuit is that the gate-to-source voltage for transistors  $Q_2$ ,  $Q_3$ , and  $Q_4$  are **DC values**!

Q: ??

A: In other words, the small signal voltages  $v_{gs}$  for each transistor are equal to **zero**:

$$v_{gs2} = v_{gs3} = v_{gs4} = 0$$

**Q:** But doesn't the small-signal source  $v_i(t)$  create small-signal voltages and currents throughout the amplifier?

A: For some of the circuit yes, but for most of the circuit no!

Note that for transistor  $Q_1$  there will be small-signal voltages  $v_{gs1}(t)$  and  $v_{ds1}(t)$ , along with  $i_{d1}(t)$ . Likewise for transistor  $Q_2$ , a small-signal voltage  $v_{ds2}(t)$  and current  $i_{d2}(t)$  will occur.



But, for the remainder of the voltages and currents in this circuit (e.g.,  $V_{D54}$ ,  $V_{G52}$ ,  $I_{D3}$ ), the small-signal component is zero!

**Q:** But wait! How can there be a small-signal drain current  $i_{d2}(t)$  through transistor  $Q_2$ , without a corresponding small-signal gate-to-source voltage  $v_{gs2}(t)$ ?

A: Transistor  $Q_2$ , is **the** important device in this analysis.

Note its gate-to-source voltage is a **DC** value (no small-signal component!), yet there **must** be (by KCL) a small-signal drain current  $i_{d'2}(\tau)$ !

This is a case where we **must** consider the **MOSFET** output resistance  $r_{o2}$ . The small-signal drain current for a **PMOS** device is:

$$i_{d2} = g_{m2} v_{gs2} - \frac{v_{ds2}}{r_{o2}}$$

Since  $v_{as2}=0$ , this equation simplifies to:

$$i_{d2} = -\frac{v_{ds2}}{r_{o2}}$$









However, we find that the **output** and **input** resistances of this amplifier are the **same** as with the enhancement load:

$$\boldsymbol{R}_{i} = \infty \qquad \boldsymbol{R}_{o} = \boldsymbol{r}_{o1} \boldsymbol{r}_{o2}$$